School Of Mathematics, Statistics, and Operations Research
Te Kura Mātai Tatauranga, Rangahau Pūnaha

MATH 321/322/323	Applied Mathematics	T1 and T2 2013

Module on Quantum Mechanics: Assignment 3

- This third assignment will deal with one-dimensional scattering phenomena described by the Schrodinger equation.
- Read chapter 5 of the notes - the chapter on one-dimensional scattering.
- Let me know of any typos or obscurities.

1. For an arbitrary potential, calculate the determinant of the transfer matrix M.
Be sure to simplify the result as much as possible.
2. For a pair of delta function potentials located at $x= \pm a$, complete the calculation of all four elements of the transfer matrix

$$
M=M_{+a} M_{-a} .
$$

3. For a single delta function potential located at the origin $x=0$, calculate ϕ_{0} the phase of the transmission amplitude t.
How does this phase change if the delta function potential is located at $x=a$?

Notation: Remember that for any arbitrary complex number we have $z=x+i y=r e^{i \phi}$.
The modulus is $r=\sqrt{x^{2}+y^{2}}$ and the phase is $\phi=\tan ^{-1}(y / x)$.
4. Modify the general argument regarding the location of transmission resonances for a pair of general potentials, which in the notes was given in terms of two potentials placed at $x=0$ and $x=a$, to find where the transmission resonances should occur in the symmetric case where one considers a pair of potentials $V_{ \pm a}(x)$ placed at $x= \pm a$.
5. Now use the specific phase ϕ_{0} already calculated for the single deltafunction potential, and the general argument regarding the location of transmission resonances for a pair of general potentials, to find where the transmission resonances should occur for a pair of delta function potentials placed at $x= \pm a$.
Compare this application of the general argument with the explicit calculation presented in the notes.
(You may need to track down a stray minus sign or two, and be careful about exactly where the potentials are placed.)
6. Transmission coefficients:
(a) Show how to get from the transmission amplitude

$$
t=\frac{T_{0} \exp \left(2 i \phi_{0}\right)}{1+\left(1-T_{0}\right) \exp \left(2 i\left[\phi_{0}+a k\right]\right)},
$$

to the transmission coefficient

$$
T=|t|^{2}=t t^{*}=\frac{T_{0}^{2}}{T_{0}^{2}+4 R_{0} \cos ^{2}\left(\phi_{0}+k a\right)}
$$

(b) What is the maximum possible value of T in terms of T_{0} ? When does this occur?
(c) What is the minimum possible value of T in terms of T_{0} ? When does this occur?

