VICTORIA UNIVERSITY OF WELLINGTON
School of Mathematics, Statistics and Operations Research School of Geography, Environment and Earth Sciences

MATH 321 Applied Mathematics I MATH 322 Applied Mathematics II MATH 323 Mathematics for Earth Sciences

Meteorology Reading Course
2013
Assignment 2

Complete the following problems which are taken from $A n$ introduction to $d y$ namical meteorology, by J. R. Holton's, 3rd edition, Academic Press, 1992. This assignment is worth 25% towards final assessment of this module.

Chapter 2 Problem 1

A ship is steaming northward at a rate of $10 \mathrm{~km} \mathrm{~h}^{-1}$. The surface pressure increases toward the northwest at the rate of $5 \mathrm{~Pa} \mathrm{~km}^{-1}$. What is the pressure tendency recorded at a nearby island station if the pressure aboard the ship decreases at a rate of $100 \mathrm{~Pa}(3 \mathrm{~h})^{-1}$?

Chapter 2 Problem 2

The temperature at a point 50 km north of a station is $3^{\circ} \mathrm{C}$ cooler than at the station. If the wind is blowing from the northeast at $20 \mathrm{~m} \mathrm{~s}^{-1}$ and the air is being heated by radiation at the rate of $1^{\circ} \mathrm{Ch}^{-1}$, what is the local temperature change at the station?

Chapter 2 Problem 3

Derive the relationship

$$
\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{r})=-\Omega^{2} \mathbf{R}
$$

which was used in Equation 2.7

Chapter 2 Problem 5

Compare the magnitudes of the curvature term $u^{2} \tan \phi / a$ and the Coriolis force for a ballistic missile fired eastward with a velocity of $1000 \mathrm{~m} \mathrm{~s}^{-1}$ at 45° latitude. If the missile travels 1000 km by how much is it deflected from its eastward path owing to both these terms? Can the curvature term be neglected in this case ?

Chapter 2 Problem 8

An air parcel that has a temperature of $20^{\circ} \mathrm{C}$ at the $1000-\mathrm{mb}$ level is lifted dry adiabatically. What is its density when it reaches the $500-\mathrm{mb}$ level?

