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Module on Mechanix: Assignment 5

• This fifth assignment is specific to the honours-level mechanix module
(Math 466).

• You do not need to do this assignment if you are enrolled in 3rd-year
Math 321/322/323.

• Let me know of any typos.

1. Elliptical orbits in Newtonian gravity:

In previous assignments we have already seen that

(circular orbits) + (Kepler’s laws)⇒ (inverse square law).

We now want to check that

(inverse square law)⇒ (elliptic orbits),

or more generally

(inverse square law)⇒ (circular/elliptic/parabolic/hyperbolic orbits),

or even more generally

(Kepler’s laws)⇔ (inverse square law).

Note that this result goes all the way back to Newton — and in fact es-
tablishing this particular, result (inverse square law)⇒ (elliptic orbits),
was the primary reason Newton developed his version of the differential
and integral calculus.

1



We have already seen how to decompose the gravitational 2-body prob-
lem into a trivial centre of mass (COM) motion plus a nontrivial relative
motion.

Discard the trivial COM motion, and focus on the relative motion.

In terms of the reduced mass µ and total mass M the Lagrangian for
the relative motion in Newtonian gravity has already been shown to
simplify to

L =
1

2
µ
∣∣∣~̇x∣∣∣2 +

GµM

|~x|
.

(a) [Trivial] Using the Euler–Lagrange equations, verify that the re-
sulting equation of motion is the standard inverse-square law

~̈x = −GM
|~x|2

x̂.

(b) [Trivial] Verify that the energy

E =
1

2
µ
∣∣∣~̇x∣∣∣2 − GµM

|~x|

is conserved.

(Note the minus sign; it is important.)

(c) [Trivial] Verify that the angular momentum

~J = ~p× ~x = µ ~̇x× ~x

is conserved.

(d) [Trivial] Show that, since the angular momentum ~J is conserved,

one can without loss of generality choose coordinates to make ~J
point along the z axis.

(e) [Trivial] If this is done, argue that the position and velocity can
always be chosen to lie purely in the (x, y) plane:

~x = (x, y, 0); ~̇x = (ẋ, ẏ, 0) .

(f) [Easy] Adopt polar coordinates (r, θ) so that we have

~x = (x, y, 0) = (r cos θ, r sin θ, 0) = r(cos θ, sin θ, 0).
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Show that

~̇x = (ẋ, ẏ, 0) = ṙ(cos θ, sin θ, 0) + r(− sin θ, cos θ, 0)θ̇,

and that

~̈x = (ẍ, ÿ, 0) = [r̈− rθ̇2](cos θ, sin θ, 0)+ [2ṙθ̇+ rθ̈](− sin θ, cos θ, 0).

(g) [Easy] Hence verify that the equations of motion reduce to

r̈ − rθ̇2 = −GM
r2

; 2ṙθ̇ + rθ̈ = 0.

(h) [Easy] Verify that the second of these equations is equivalent to
the constancy of

| ~J | = µr2θ̇.

(i) [Easy] Hence show that

r̈ =
J2

µ2r3
− GM

r2
.

You could in principle integrate this ODE directly — good luck.

(j) [Devious] Instead let’s be a little devious — write r = r(θ) and
show that

ṙ =
dr

dθ
θ̇ =

dr

dθ

J

µr2
.

(k) [Devious] Thence show

r̈ =
d

dθ

(
dr

dθ

J

µr2

)
θ̇

=
d

dθ

(
dr

dθ

J

µr2

)
J

mr2

=
d2r

dθ2

J2

µ2r4
− 2

(
dr

dθ

)2
J2

µ2r5
.

(l) [Devious] Now let’s be even more devious — write

u(θ) =
1

r(θ)
,
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and show that
du

dθ
= − 1

r2

dr

dθ
,

and that
d2u

dθ2
= − 1

r2

d2r

dθ2
+

2

r3

(
dr

dθ

)2

.

(m) [Easy] Hence deduce

r̈ = − J2

m2r2

d2u

dθ2
= −J

2u2

m2

d2u

dθ2
.

(n) [Easy] Inserting this into the radial equation of motion deduce

−J
2u2

µ2

d2u

dθ2
=
J2u3

µ2
−GMu2,

and from this obtain

d2u

dθ2
=
GMµ2

J2
− u.

(o) [Easy] The virtue of taking these extremely devious intermediate
steps is that this last ODE is now very easy to integrate.

Define

ũ = u− GMµ2

J2
,

so that
d2ũ

dθ2
= −ũ.

Show that the general solution to this last ODE is:

ũ(θ) = A cos(θ +B).

(p) [Easy] From this deduce

u(θ) =
GMµ2

J2
+ A cos(θ +B),

whence

r(θ) =
1

GMµ2

J2 + A cos(θ +B)
,
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which one can rewrite as

r(θ) =
J2

GMµ2

1

1 + e cos(θ +B)
,

or even better as

r(θ) =
J2

GMµ2(1− e2)
1− e2

1 + e cos(θ +B)
.

Recognize that this is one of the standard forms of representing
an ellipse (with polar coordinates relative to one of the foci of the
ellipse).

Remember Kepler’s first law: the planets move in ellipses with the
sun at one focus.

(A more precise statement is that the planets move in ellipses with
the 2-body center of mass at one focus).

The quantity e is the eccentricity of the ellipse.

The quantity

a =
J2

GMµ2

is called the semi latus rectum of the ellipse.

(q) [Easy] Calculate the semi major axis of the ellipse.

(r) [Easy] Calculate the semi minor axis of the ellipse.

(s) [Easy] What happens if e = 0?

Physically interpret this situation.

(t) [Easy] What happens if e = 1?

Physically interpret this situation.

(u) [Easy] What happens if e > 1?

Physically interpret this situation.

(Yes, this does happen in the “real world”.)

I realise this has been somewhat painful — but just think what Newton
had to do when coming up with an equivalent argument and inventing
calculus at the same time.
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2. Virial theorem:

The so-called virial theorem is most often formulated and used within
the context of non-relativistic mechanics of a n-body system interacting
via central forces.

Let us consider the Lagrangian

L = T − Vtotal,

where

T =
1

2

n∑
i=1

mi

∣∣∣~̇xi∣∣∣2 ; and Vtotal =
∑
i<j

V ( |~xi − ~xj| ) .

Define quantities called the “scalar moment of inertia” I, and the
“scalar virial” G, by:

I =
n∑
i=1

mi |~xi|2 ; and G =
n∑
i=1

~pi · ~xi =
n∑
i=1

mi ~̇xi · ~xi.

(a) [Easy]

Assuming the individual masses are constant show that

dI

dt
= 2G.

(b) [Easy]

Show
dG

dt
= 2T +

n∑
i=1

~Fi · ~xi.

(c) [Straightforward]

Define rij = |~xi − ~xj|.
Using the fact that Vtotal is assumed to be sum of 2-body central
potentials, demonstrate that

dG

dt
= 2T −

n∑
i<j

dV

dr

∣∣∣∣
rij

rij.
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(d) [Easy]

For a power law potential V (r) = αrβ show that this implies

dG

dt
= 2T − βVtotal.

(e) [Easy]

In particular, for n particles interacting via Newtonian gravity or
electrostatic forces show that this implies

dG

dt
= 2T + Vtotal.

(f) [Easy]

If the system is assumed to undergo periodic motion show that
the time average of dG/dt vanishes identically:〈

dG

dt

〉
= 0.

Note: Even if the motion is not exactly periodic there are still
situations under which one can usefully approximate〈

dG

dt

〉
≈ 0.

(g) [Easy]

Under the assumption of periodic motion under a power-law po-
tential V (r) = αrβ show:

〈T 〉 =
β

2
〈Vtotal〉.

(h) [Easy]

Under the assumption of periodic motion under Newtonian gravity
or electrostatic forces show:

〈T 〉 = −1

2
〈Vtotal〉.

7



(i) [Tricky]

What if anything can you say about the situation where the par-
ticles are relativistic?

Consider the quantity

Ti =
mic

2√
1− v2/c2

−mic
2,

and find an appropriate virial theorem.

Can you generalize this even further?

(j) [Tricky]

What (if anything) can you say about the situation where the
2-body forces are not a power law?

End of honours-level assignment for the mechanix module.
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