School Of Mathematics, Statistics, and Operations Research
 Te Kura Mātai Tatauranga, Rangahau Pūnaha

MATH 321/322/323 Applied Mathematics T1 and T2 2013

Module on Mechanix: Assignment 4

- This fourth and final assignment will deal with the interplay between the Hamiltonian and Lagrangian descriptions of classical mechanics.
- By now you should have read all the notes.
- Applied math level proofs are good enough - I do not demand absolute analytical rigour, but do want to see enough information so that any interested reader could fill in any missing steps.
- If you find any typos in the notes or assignment, please let me know.

1. Consider a Hamiltonian of the form

$$
H(\vec{p}, \vec{x})=\sqrt{m_{0}^{2} c^{4}+|\vec{p}|^{2} c^{2}}+V(\vec{x}) .
$$

(You should find this question "straightforward", it is closely related to the last question in Assignment 3; I have broken things down into simple little steps.)
(a) You will already have written down Hamilton's equations for this particular Hamiltonian, and you will have solved for \vec{p} as a function of $\overrightarrow{\dot{x}}$, (and c and m_{0}).
Rewrite those key results.
(b) Now perform the transformation discussed in the notes whereby you can take a Hamiltonian and transform it into an equivalent Lagrangian.
Explicitly evaluate

$$
L(\vec{x}, \overrightarrow{\dot{x}})
$$

as a function of $m_{0}, c, \overrightarrow{\dot{x}}$, and $V(\vec{x})$.
(c) Find the Euler-Lagrange equations coming from this Lagrangian $L(\vec{x}, \vec{x})$. Interpret them physically.
(d) Take the limit $|\vec{x}| \ll c$ in the Euler-Lagrange equations you have just derived. What do you get? Interpret your result.
(e) Take the limit $|\overrightarrow{\dot{x}}| \ll c$ directly in the Lagrangian you derived above. Be certain to keep the first non-trivial term in $|\overrightarrow{\dot{x}}|$. What do you get? Interpret your result.
(f) Again take the limit $|\vec{x}| \ll c$ directly in the Lagrangian you derived above, but now keep the first two nontrivial terms in $\overrightarrow{\vec{x}}$.
What do you get? Interpret your result.
2. Consider a Lagrangian of the form:

$$
L=\frac{1}{2}\left\{\sum_{i, j=1}^{N} m_{i j} \dot{x}^{i} \dot{x}^{j}\right\}-V\left(x^{k}\right) .
$$

(a) Find the momenta p_{i} as functions of $m_{i j}$ and \dot{x}^{i}.
(b) Rewrite this relation between the p_{i} and the \dot{x}^{i} as a linear matrix equation involving the matrix $M=\left[m_{i j}\right]$.
(c) Invert this relationship to find the velocities \dot{x}^{i} as functions of the momenta p_{i} and the quantities $m_{i j}$.
(You may find it useful to adopt the notation that $m^{i j}$ stands for the matrix inverse M^{-1} of the $N \times N$ matrix $M=\left[m_{i j}\right]$ - note carefully the use of superscripts rather than subscripts - this is one of those tricky notational conventions that looks a little odd the first time you see it, but is ultimately extremely useful, and is also extremely common and standard.)
(d) Using these results, find the equivalent Hamiltonian $H\left(p_{i}, x^{i}\right)$.
(e) Develop a good physical interpretation for the $N \times N$ matrix $m_{i j}$.
3. Consider the Hamiltonian

$$
H(\vec{p}, \vec{x})=\frac{|\vec{p}-q \vec{A}(\vec{x})|^{2}}{2 m}+q V(\vec{x})
$$

that we looked at in the previous assignment.
(a) Show that this is equivalent to the Lagrangian

$$
L(\vec{p}, \vec{x})=\frac{1}{2} m(\dot{\vec{x}})^{2}-q\{V(\vec{x})+\dot{\vec{x}} \cdot \vec{A}(\vec{x})\} .
$$

(b) Write down the Euler-Lagrange equations.
(c) Physically interpret these results.
4. Consider the Hamiltonian

$$
H(\vec{p}, \vec{x})=\sqrt{m_{0}^{2} c^{4}+c^{2}|\vec{p}-q \vec{A}|^{2}}+q V(\vec{x})
$$

This is the relativistic generalization of the Hamiltonian in the previous question.
(a) Demonstrate that if $|\vec{p}-q \vec{A}|^{2} \ll m_{0}^{2} c^{2}$ this relativistic Hamiltonian will reduce to the non-relativistic Hamiltonian of the previous question.
(b) Show that this is equivalent to the Lagrangian

$$
L(\vec{p}, \vec{x})=-m_{0} \sqrt{1-(\dot{\vec{x}})^{2} / c^{2}}+q\{V(\vec{x})+\dot{\vec{x}} \cdot \vec{A}(\vec{x})\} .
$$

(c) Demonstrate that if $(\dot{\vec{x}})^{2} \ll c^{2}$ this relativistic Lagrangian will reduce to the non-relativistic Lagrangian of the previous question.
(d) Write down the Euler-Lagrange equations for the full relativistic Lagrangian.
(e) How do they differ from the Euler-Lagrange equations of the nonrelativistic Lagrangian of the previous question.
(f) Physically interpret these results.

$$
-\# \# \#-
$$

- End of fourth and final assignment in the undergraduate version of the Mechanix module.
- If you are taking this module as part of Honours-level Applied Math, be sure to complete the additional Assignment 5.
- \# \# \# -

