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In the first three weeks of this module, you examined and determined many analytic solutions for 

fluid flow of earth materials.  As has been noted several times in the text, however, most fluid flow 

problems cannot be solved with analytic techniques, and so numerical methods are generally 

employed for present research in fluid dynamics.  In this section of the module, to last 3 weeks, we 

will use several techniques to solve different fluid flow problems.  In all problems, analytic solutions 

exist for the simplest case of isoviscous media.  This is very useful, as the programs can be 

compared to the analytic solutions to be sure that they work properly, before using them for more 

complicated problems. 

As you have no doubt realised, the general problem of fluid flow involves integration of several 

different differential equations.  Numerical methods of integration will therefore be used to solve 

the problems.  The basic concept of using computers to solve calculus problems is conceptually 

simple.  You will recall that derivatives involve taking the limit as small elements get infinitesimally 

tiny.  The basic concept of “brute force” techniques in numerical methods is to treat the differential 

equations as if they were regular algebraic equations with elements that are small, but still finite.  

A medium is broken into tiny elements, and the equations are applied on each element.  This is 

called “discretisation”. The elements are small enough that the derivatives in the differential 

equations are converted into ratios of small steps of time, position, etc. In numerical methods, 

functions tend to be defined over arrays, derivatives become ratios of differences between 

elements of the arrays and the step size, and integrals become sums over the array.  The 

equations are usually solved iteratively.  Complications occur because the elements cannot 

become truly infinitesimal, and arrays cannot have infinite numbers of elements. There is a huge 

body of literature and research on the topic of finding the optimum technique for each problem, 

and we will only touch on a few in the three weeks we have available.  

The governing partial differential equation subject to specified boundary (and for transient 

problems, initial) conditions is transformed into a system of ordinary differential equations (for 

transient problems) or algebraic equations (for steady-state problems) which are solved to yield an 

approximate solution for the flow distribution.  



The computer section is divided into three weekly assignments.  We will start out with calculating 

integrals and derivatives of functions numerically in a standard fashion, including a problem of 1D 

fluid flow in a channel.   Later weeks will use techniques that use finite difference formulations to 

solve differential equations. 

Notes on methodology: 
 

As stated above, in the finite difference method, equations are changed to algebraic equations involving 

elements of the array.  See Example in Figure 1.   

 

 

 

 

 
Figure 1. Function (x) discretised. 

 

 

  

 Steps to Finite Difference Analysis: 

  

 1. Choose suitable step size and time increment 

 2. Replace continuous information by discrete nodal values 

 3. Construct discretization (algebraic) equations with suitable numerical methods 

 4. Specify appropriate auxiliary conditions for discretization equations 

 

Finite-Difference Methods 

 Replace derivatives by differences 
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Example:  Heat Equation 

 

 

 

 

 

 

 

 

 

 

 

 

One-sided scheme: 

 

 
 

 

This is based on the first order Taylor series expansion.  Other schemes use higher order expansions, 

e.g.,  
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Remember, the Taylor Series Expansion of a function f can be written as follows: 

 

 
 

 

 

Another way of writing it is as follows: 
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Of course, a Taylor’s series expansion is infinite, and in the real world, it must be truncated at some value of 

n, called the order of the expansion.  

 

The second derivative can be written a number of ways as well.  Below are some expressions for Finite 

differences for derivatives with respect to x.  The symbol O(x) means that the errors are of order of x, and 

similarly for the square. 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

Truncation Errors 

 

If the Taylor series is truncated at order n, then the truncation error TE is just all the terms that have been left 

out.  So, if we approximate the Taylor series for x between a and b as below: 

 

 

 

 

 

 

 

 

 

 How to reduce truncation errors? 

    (a) Reduce grid spacing, use smaller x = x-xo 

    (b) Increase order of accuracy, use larger n 

 

Example:  The second derivative of velocity in the y direction can be approximated using the following 

finite difference scheme: 
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Numerical Integration 

 

One simple way to integrate an equation is through use of the trapezoidal rule.  Basically, it uses the idea 

that the integral is the area under the curve made by the function.  It approximates this area by a trapezoid. 

Therefore, to integrate a function f(z) over a very small interval z2-z1,  we can write the function as follows: 
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Integrating over a larger interval then becomes a sum over N such small intervals: 
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If we use equally spaced intervals, then zi+1-zi = z = constant and the equation becomes: 
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Another way to think about it is that you are approximating the function over a small interval by the average 

of the function at the two endpoints of the interval. 

 

 

More resources (mainly for later parts of the module): 

Web pages on numerical modeling: 

http://www.ldeo.columbia.edu/~mspieg/mmm/ 

(especially http://www.ldeo.columbia.edu/~mspieg/mmm/Diffusion.pdf (Chapter 6) 

This is the best overall resource I’ve found on numerical modeling of Geophysics problems. Mark 
Spiegelman is one of the leading Geophysical modellers. 
  

Some of the notes above were excerpted from the following web page 

http://ceprofs.tamu.edu/hchen/cven688/chap03a.ppt 

 

 

http://www.ldeo.columbia.edu/~mspieg/mmm/
http://www.ldeo.columbia.edu/~mspieg/mmm/Diffusion.pdf


Assignment 4 Maths 323 Fluid Flow module 2013: Numerical differentiation and integration 

The final goal of this week and the start of next is to solve the problem of fluid flow in 1D.  The 

analytic solution was solved in Chapter 6-2 of Turcotte & Schubert for the case of a constant 

viscosity fluid, and you checked some aspects of it in your problem set.  Next week we will be 

extending the problem to allow for an arbitrary viscosity structure, and will solve the problem 

numerically.  To get you used to numerical methods, however, we will start with a couple of 

simpler problems. 

Part I:  Numerical Differentiation 

I have created a very simple Excel spreadsheet, which I will give to you, that integrates and differentiates the 

function nazzf )( . The “analytical solutions” are the ones you have learned in high school calculus 

classes—f’(z) = anz
n-1

 etc.  The “numerical solutions” are the ones made using differences or sums of parts 

of the array.  Note that the spreadsheet has been implemented so that the values don’t update automatically 

when you change them—On a PC, you need to hold down the “Control” key and hit the “+” button to update 

it. (On Apple, is also Control + or Apple +, but only for the + sign that is near the letters of the keyboard 

(not on the number pad).  Answer the following questions, being sure to label and explain your graphs as 

discussed below. Your mark will depend on the writeup—spreadsheets can help as an aid to help me 

understand where you’ve gone wrong and a check to be sure they work, but spreadsheets with no 

explanation are not acceptable. 

 

1.  Try the spreadsheet, and modify it to use different values for a, n and dz, for integration to z=5.  

You may need to press the “ctrl +” keys to get the computer to respond to any changes you make. 

Be sure to look at least at n=1,2, and a higher value, and at dz=0.01, 0.1, 1.  Note that you may 

need to change the number of rows you use in each case.  If you know another language, e.g., 

Matlab, C or fortran, and want to use it instead, you may do so.  Explain how the spreadsheet or 

program implements the numerical differentiation and integration discussed above.  (For example, 

you could pick a particular set of cells and explain how the formulas in the cells relate to the 

definitions of the integrals and derivatives.)  Explain why there are or are not differences between 

the analytic and numerical solutions for the different cases.  Graph your solutions (including 

graphs of the differences between the numerical and analytical results) and explain your graphs.  

(15 marks) Your mark will depend on the writeup—spreadsheets can help as an aid to help me 

understand where you’ve gone wrong and a check to be sure they work, but spreadsheets with no 

explanation are not acceptable. 

2. Which differentiation form have I used?  Try one other form of differentiation and explain why it 

yields better or worse solutions for the higher order values (i.e, for n equal to 3 or greater).  Show 



examples through graphs of differences between the analytic and numerical solutions to the 

functions.  (10 marks) 

3.   Use one of the forms given above to calculate the 2nd derivative numerically, and verify how 

well it matches the analytic solution, for at n=3 and n=5, and two different values of dz. (10 marks) 

 

Part II:  Numerical Integration 

4.  Create your own spreadsheet or program to calculate the error function discussed in Chapter 4 

of Turcotte and Schubert.  This is an example of a function that has no analytic solution. Again try 

different values of the increment dz and see how well you match the values in Table 4-5 on p. 155.  

(Ed. 2) Explain any differences. (10 marks) 

 

Part III  1-d fluid flow in  a channel 

We will now calculate 1-dimensional fluid flow in a channel that can have arbitrary viscosity as a 

function of depth.   

5. a) If the viscosity is a function of depth, and the pressure gradient dp/dx is a constant P, then 

show that Turcotte and Schubert (2nd Edition) equations 6-1 and 6-8 lead to a modification of 

equation 6-10 of that becomes: 

P
dx

dp

dy

dy

du
yd



))((

 (Eq. FF1) 

Where as usual, u is the velocity in the x direction, y is depth, and  is viscosity.  

b)  Given boundary conditions of u(0) = u0 and u(h) = 0 (for example, as in asthenospheric flow 

driven by a rigid plate moving above it), show that the equation FF1 above can be rewritten as 

follows: 
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Where the constant of integration s = du/dy evaluated at y = 0, is given by: 
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Hint:  y’ is a dummy variable of integration.  Try setting w(y’) = (y’)(du/dy’) and integrating the 

expression.  (10 marks total for parts a and b) 

 

6.  Make an excel spreadsheet (or other type of program if you like) to allow you to calculate the integral 

numerically for an arbitrary viscosity structure.  Next week you will use the spreadsheet to carry out the 

calculations for arbitrary structures.  This week, however, please use a constant viscosity to show that it 

gives the expected response for the two simplified flow conditions (Couette flow and when dP/dx=constant 

but u=0).  (20 marks) 

 

Hint 1:  You should have one column of depths and one column that is the viscosity at that depth.  Even 

though the viscosity you will use this week is constant, this form will allow it to be varied arbitrarily next 

week. You should be able to carry out the integration with two separate calculations for the two integrals, 

and add them together in a final column.  The constant s will depend on the values of the last row in the 

integrals.   

 

Hint 2:  If you use a viscosity that is close to the real viscosity of the mantle, you could run into numerical 

problems because computers are not all set up to deal with such large values.  Instead, use a viscosity of 1 

during the main calculations and later on when you are asked about real earth problems--multiply the 

answers by the appropriate value to get an answer for the real earth. 

 

Email your spreadsheet to me to back up the plots and discussion.  Save your spreadsheet for the next 

assignment, as you will use it for further calculations.  Your mark will depend on the writeup though—

spreadsheets with no explanation are not acceptable. 

 

Guidelines for writing reports on spreadsheet results: 

 

1)  Graphs are better than tables to explain most points. 

2)  Graphs must be labelled so that somebody else can understand them.  If there are two types of lines or 

symbols, they need to be explained in a key or a caption. If you print your graphs in black and white, be sure 

that something besides colour distinguishes them--e.g., symbol shape. 

3) Font size should be large enough for me to read--e.g, 12 point, both in the text and on figures.   

4)  Give your graphs figure numbers so that when you discuss them, you can refer to them. 

5) You don't need to plot every single graph you've generated--showing a few that explain the points you are 

trying to make will be sufficient. 

6) Be sure that you *do* explain your graphs so that it's clear you understand what you've done.  And be 

sure that when you make points, you *do* include the graphs that illustrate those points. 


