Notes for Assignment 2 Maths 323 fluids 2014

Last time:

Continuity Equation (Sec 6-7)
Force Balance (Sec 6-8)
Stream Function (Sec 6-9)
Postglacial Rebound (Sec 6-10)
Angle of Subduction (Sec. 6-11)
Diapirs intro (Sec 6-12)

Notes for Assignment 2 Maths 323 fluids 2014 Day 2

This time:
Diapirs (Sec 6-12)
Stokes Flow (Sec 6-14)

Equations so far

Continuity Equation in 2D

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad \text { where } \quad \text { 3x } \quad \vec{\nabla}: \vec{u}=0
$$

Balance of pressure and viscous forces

$$
\mathrm{Eq}(6-67) \frac{\partial P}{\partial x}=\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \quad \text { 3-D: } \quad \vec{\nabla} P=\mu \nabla^{2} \vec{u}
$$

$$
\operatorname{Eq}(6-68) \frac{\partial P}{\partial y}=\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right) \quad \text { Where } \mathrm{P}=\mathrm{p}-\rho \mathrm{gy}=\text { deviatoric stress }
$$

$$
u=-\frac{\partial \psi}{\partial y} ; v=\frac{\partial \psi}{\partial x}
$$

$$
\nabla^{4} \psi=0
$$

Stream function ψ Biharmonic Equation:

$$
Q=\int_{A}^{B} d \psi \Rightarrow \psi_{B}-\psi_{A}
$$

Flow rate from integral of stream function

Diapirs (Rayleigh-Taylor Instabilities) (not nappies)

- Driven by gravity and density imbalances-high over low
- Examples:
- Paint dripping
- Mantle "drips"
- Start of convection, plumes, lava lamps
- Salt domes
- Could grow exponentially until it breaks up, or could die out--returning to original state (but not periodic-not elastic)

Salt Domes

Images from :
http://geology.com/stories/13/saltdomes/

Basic Eqn: Incompressible continuity Eqn $\vec{\nabla} \cdot \vec{u}=0$ or $\nabla^{4} \psi=0$

Balance Buoyancy Forces by Pressure Forces:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\nabla} P=\vec{\nabla}(p-\rho g y) \\
& \begin{array}{l}
\text { P=Pressure } \\
\text { generated by } \\
\text { fluid flow }
\end{array} \\
& \qquad \vec{\nabla} P=\mu \nabla^{2} u \quad \text { (6-67 to 6-68) } \\
& \text { Buoyancy= } 19 g y
\end{aligned}
$$

To solve eqn-introduce stream function ψ Like postglacial rebound or subducting plate-but boundary conditions differ

6-2] The Rayleigh-Taylor instability of a dense fluid overlying a lighter fluid.

- Boundary conditions:
$-1)$ Rigid at top and bottom ($-b_{1}$ and b_{2})—no slip condition (u continuous)
$\therefore u=v=0$ at $y=-b_{1}$ and b_{2}
- 2) Displacements and velocities and shear stress must be continuous across boundary between media (i.e., at interface, but since w is small, effectively $y=0$ here)

Guess solutions of ψ

- $\psi_{1} ; \psi_{2}$ separate for each of top, bottom.
- ψ is similar in form to postglacial rebound, but uses hyperbolic functions instead of simple sines and cosines:

(similar expression for ψ_{2})

Solve by:

- Show that both $\psi_{1,2}$ are solns by substituting back into eqn,
- Determine $u_{1,2}$ and $v_{1,2}$ from derivatives of $\psi_{1,2}$

$$
u_{1,2}=-\frac{\partial \psi_{1,2}}{\partial y} ; v_{1,2}=\frac{\partial \psi_{1,2}}{\partial x}
$$

- Boundary conditions:
- $u=v=0$ at $y=-b_{1}$ and $b_{2} \rightarrow u(x, y)$ become $u_{1}\left(x,-b_{1}\right)=0 ; v_{1}\left(x,-b_{1}\right)=0$ $u_{2}\left(x, b_{2}\right)=0 ; v_{2}\left(x, b_{2}\right)=0$

6-21 The Rayleigh-Taylor instability of a dense fluid overlying a lighter fluid.

- Boundary conditions:
$-1)$ Rigid at top and bottom ($-b_{1}$ and b_{2})—no slip condition (u continuous)
$\therefore u=v=0$ at $y=-b_{1}$ and b_{2}
- 2) Displacements and velocities and shear stress must be continuous across boundary between media (i.e., at interface, but since w is small, effectively $y=0$ here)

2) velocities and shear stress must be continuous across boundary between media (i.e., at $y=0$ here because w is small)

- $\mathrm{u}_{1}(\mathrm{x}, 0)=\mathrm{u}_{2}(\mathrm{x}, 0) ; \mathrm{v}_{1}(\mathrm{x}, 0)=\mathrm{V}_{2}(\mathrm{x}, 0)$

$$
\begin{aligned}
& \tau_{x y}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \text { is same at boundary }, \\
& \mu\left(\frac{\partial u_{1}(x, 0)}{\partial y}+\frac{\partial v_{1}(x, 0)}{\partial x}\right)=\mu\left(\frac{\partial u_{2}(x, 0)}{\partial y}+\frac{\partial v_{2}(x, 0)}{\partial x}\right)
\end{aligned}
$$

- (x dependence is purely a function of $\sin (2 \pi x / \lambda))$
- Another key-interface is moving with the same velocity as the fluid, so at $\mathrm{y}=0$

$$
\frac{\partial w}{\partial t}=v(x, 0)
$$

Finally, balance forces--buoyancy and fluid flow pressure

6-22 The buoyancy force associated with the displacement of the interface.

$\left(\rho_{1}-\rho_{2}\right) g w=\left(P_{2}-P_{1}\right)$ at $\mathrm{y}=0$
Buoyancy
Flow pressure found from integrating 6-72

$$
\frac{\partial P}{\partial x}=-\mu\left(\frac{\partial^{3} \psi}{\partial x^{2} \partial y}+\frac{\partial^{3} \psi}{\partial y^{3}}\right)
$$

Final solution after much

- Solution:

$$
w=w_{0} e^{t / \tau_{a}}
$$

- Where τ_{a} is the growth time of the disturbance
- τ_{a} (Eqn 6-158) is a function of sinh, $\cosh (2 \pi \mathrm{~b} / \lambda)$ multiplied by

$$
\frac{4 \mu}{\left(\rho_{2}-\rho_{1}\right) g b}
$$

- τ_{a} depends on wavelength, but if have displacements at multiple wavelengths, fastest growing wavelength will dominate (τ_{a} is a minimum)

algebra:

248 FLUID MECHANICS
Dimensionless growth time of disturbance

Dimensionless wavenumber

Stokes' Flow: How fast does a body fall due to its own weight?

- Applies in limit of very viscous fluid, with $\mathrm{Re}<1$ (reversible flow)
- Applications:
- Fall of pieces of slab
- Rise of plumes/magma
- Fall of metal probe

Ball rises through stationary fluid or fluid flows past stationary ball

Sphere Falling in a Fluid

Fluid viscosity η

Sphere Falling in a Fluid

$\mathrm{Fg}+\mathrm{F}_{\mathrm{B}}+\mathrm{F}_{\mathrm{D}}=0$

Fluid viscosity η
seismic
propagating crack embedded probe
mantle

Fall of Iron into Core

Stevenson, David J. Mission to Earth's Core -A Modest Proposal. Nature, 423, 239-240, 2003. (in course notes)

About 1 week to get to core

Balance gravity (Buoyancy) and Viscous drag forces

- Dominant equations: continuity equation and pressure equation again, same as before but now geometry and boundary conditions change

$$
\vec{\nabla} \cdot \vec{u}=0 \quad \vec{\nabla} P=\mu \nabla^{2} u
$$

- Where $P=p-\rho g y$
- $\rho_{\mathrm{f}}=$ density of fluid
- $\rho_{\mathrm{s}}=$ denisty of sphere

$$
\operatorname{Re}=\frac{\rho_{f} U(2 a)}{\mu}
$$

Boundary Conditions

- As $r \rightarrow \infty$
$u_{r} \rightarrow-U$ in z direction
$u_{r} \rightarrow-U \cos \theta u_{\theta} \rightarrow U \sin \theta$
No-slip on sphere: at $\mathrm{r}=\mathrm{a}$

$$
\mathrm{u}_{\mathrm{r}}=\mathrm{u}_{\theta}=0
$$

Continuity equation becomes:

$$
0=\vec{\nabla} \cdot \vec{u}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\left(\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}\right)
$$

But since $u_{\Phi}=0$, last term is 0
To solve equation, also need the Laplacian of u :

$$
\begin{aligned}
& \nabla^{2} \vec{u}=\vec{\nabla}(\vec{\nabla} \cdot \vec{u})-\vec{\nabla} \times(\vec{\nabla} \times \vec{u}) \\
& \vec{\nabla} \times \vec{u}=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(u_{\phi} \sin \theta\right)-\frac{\partial u_{\theta}}{\partial \phi}\right] \hat{r}+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial u_{r}}{\partial \phi}-\frac{\partial\left(r u_{\theta}\right)}{\partial r}\right] \hat{\theta}+\frac{1}{r}\left[\frac{\partial\left(r u_{\theta}\right)}{\partial r}-\frac{\partial u_{r}}{\partial \theta}\right] \hat{\phi}
\end{aligned}
$$

Pressure forces: Terms in P
Viscous forces: Terms in $\mu \nabla^{2} u$

Solution

- Surprisingly, most terms drop out and ...
- Pressure due to fluid flow is (Eq 6-216):

$$
p=\frac{3 \mu a U}{2 r^{2}} \cos \theta
$$

- Integrate to get downward "drag" (force) due to fluid pressure across sphere: $D_{p}=2 \pi \mu a U$

Viscous drag:

- Using 3-D formulation of stress again:

$$
\vec{\tau}=\mu\left(\vec{\nabla} \vec{u}+\vec{\nabla} \vec{u}^{T}\right)
$$

Integrate to get Viscous Drag $\mathrm{D}_{\mathrm{v}}=4 \pi \mu \mathrm{aU}$ So total Drag $F_{D}=$ Viscous Drag + Pressure Drag $=D_{p}+D_{v}=6 \pi \mu a U$

Speed of rise or fall:

- Balance Buoyancy Forces with Drag forces for steady-state case (no acceleration):
- $F_{B}=\left(\rho_{f^{-}} \rho_{s}\right) g 4 \pi a^{3} / 3=F_{D}=6 \pi \mu a U$
- Solve for U
- For faster flow, Re>1, more difficult: use dimensionless drag coefficient C_{D}

$$
\begin{aligned}
& C_{D}=\frac{\Gamma_{\mathrm{E}}}{\frac{1}{2} \rho_{f} U^{\prime} \pi a^{2}}=\frac{24}{\operatorname{Re}}(6-226) \\
& \text { Se to vel. }
\end{aligned}
$$

- Stokes

 flow:$U=\frac{2\left(\rho_{f}-\rho_{s}\right) g a^{2}}{9 \mu}(6-229)$

- $R e>1$:

$$
U=\left[\frac{8\left(\rho_{f}-\rho_{s}\right) g a}{3 C_{D} \rho_{f}}\right]^{1 / 2}(6-230)
$$

$$
\begin{aligned}
C_{D} \equiv \frac{F_{D}}{\frac{1}{2} \rho_{f} U^{2} \pi a^{2}}=\frac{24}{\operatorname{Re}}(6-226) \\
\quad \bar{u}=\operatorname{avg} \text { speed }
\end{aligned}
$$

$$
\operatorname{Re}=\frac{\rho \bar{u} D}{\mu}=\frac{\bar{u} D}{v}
$$

Compare to pipe flow:

(a)

(b)
turbulent

6-7 Dependence of the friction factor f on the Reynolds number Re for laminar flow, from Equation ($6-41$), and for turbulent flow, from Equation (6-42).

