Notes for Assignment 2 Maths 323 fluids 2014

Last time: Continuity Equation (Sec 6-7) Force Balance (Sec 6-8) Stream Function (Sec 6-9) Postglacial Rebound (Sec 6-10) Angle of Subduction (Sec. 6-11) Diapirs intro (Sec 6-12)

Notes for Assignment 2 Maths 323 fluids 2014 Day 2

This time: Diapirs (Sec 6-12) Stokes Flow (Sec 6-14)

Equations so far

Continuity Equation in 2D

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad \text{where} \quad 3\text{-D:} \\ u = \frac{\partial x}{\partial t}; v = \frac{\partial y}{\partial t}$$

$$\vec{\nabla} \cdot \vec{u} = 0$$

Balance of pressure and viscous forces

Eq(6-67)
$$\frac{\partial P}{\partial x} = \mu (\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})$$
 3-D: $\nabla P = \mu \nabla^2 \vec{u}$
Eq(6-68) $\frac{\partial P}{\partial y} = \mu (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$ Where P=p-pgy=deviatoric stress

$$u = -\frac{\partial \psi}{\partial y}; v = \frac{\partial \psi}{\partial x} \qquad \nabla^4 \psi = 0$$
$$Q = \int_A^B d\psi = \psi_B - \psi_A$$

Stream function ψ Biharmonic Equation:

Flow rate from integral of stream function

Diapirs (Rayleigh-Taylor Instabilities) (not nappies)

- Driven by gravity and density imbalances—high over low
- Examples:
 - Paint dripping
 - Mantle "drips"
 - Start of convection, plumes, lava lamps
 - Salt domes
- Could grow exponentially until it breaks up, or could die out--returning to original state (but not periodic—not elastic)

Salt Domes

Images from : http://geology.com/stories/13/saltdomes/

Basic Eqn: Incompressible continuity Eqn $\vec{\nabla} \cdot \vec{u} = 0 \text{ or } \nabla^4 \psi = 0$

Balance Buoyancy Forces by Pressure Forces:

=0 if forces are in balance (e.g., eqn 6-151)

To solve eqn—introduce stream function ψ Like postglacial rebound or subducting plate—but boundary conditions differ

6–21 The Rayleigh–Taylor instability of a dense fluid overlying a lighter fluid.

In general, b₁≠b₂

Displacement w<< b_1 and b_2 -- approximation is very important –i.e., Interface shape is w=Acos2 π x/ λ

Because A is small, can treat interface as if it were at y=0 for the purposes of solving boundary conditions

- Boundary conditions:
 - 1)Rigid at top and bottom (-b₁ and b₂)—no slip condition (u continuous)
 - \therefore u=v=0 at y= -b₁ and b₂
 - 2) Displacements and velocities and shear stress must be continuous across boundary between media (i.e., at interface, but since w is small, effectively y=0 here)

Guess solutions of $\boldsymbol{\psi}$

- ψ_1 ; ψ_2 separate for each of top, bottom.
- ψ is similar in form to postglacial rebound, but uses hyperbolic functions instead of simple sines and cosines:

Solve by:

- Show that both $\psi_{1,2}$ are solns by substituting back into eqn,
- Determine $u_{1,2}$ and $v_{1,2}$ from derivatives of $\psi_{1,2}$ $u_{1,2} = -\frac{\partial \psi_{1,2}}{\partial y}; v_{1,2} = \frac{\partial \psi_{1,2}}{\partial x}$
- Boundary conditions:
- u=v=0 at y= -b₁ and b₂ → u(x,y) become
 u₁(x,-b₁)=0; v₁(x,-b₁)=0
 u₂(x,b₂)=0; v₂(x,b₂)=0

6–21 The Rayleigh–Taylor instability of a dense fluid overlying a lighter fluid.

- Boundary conditions:
 - 1)Rigid at top and bottom (-b₁ and b₂)—no slip condition (u continuous)
 - \therefore u=v=0 at y= -b₁ and b₂
 - 2) Displacements and velocities and shear stress must be continuous across boundary between media (i.e., at interface, but since w is small, effectively y=0 here)

2) velocities and shear stress must be continuous across boundary between media (i.e., at y=0 here because w is small)

• $u_1(x,0)=u_2(x,0); v_1(x,0)=v_2(x,0)$

$$\tau_{xy} = \mu(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) \text{ is same at boundary,}$$
$$\mu(\frac{\partial u_1(x,0)}{\partial y} + \frac{\partial v_1(x,0)}{\partial x}) = \mu(\frac{\partial u_2(x,0)}{\partial y} + \frac{\partial v_2(x,0)}{\partial x})$$

- (x dependence is purely a function of sin(2πx/λ))
- Another key—interface is moving with the same velocity as the fluid, so at y=0 $\frac{\partial w}{\partial t} = v(x,0)$

Finally, balance forces--buoyancy and fluid flow pressure

6-22 The buoyancy force associated with the displacement of the interface.

$$(\rho_1 - \rho_2)gw = (P_2 - P_1)$$
 at y = 0

Flow pressure found from integrating 6-72

$$\frac{\partial P}{\partial x} = -\mu(\frac{\partial^3 \psi}{\partial x^2 \partial y} + \frac{\partial^3 \psi}{\partial y^3})$$

Buoyancy

Final solution after much algebra:

• Solution:

 $w = w_0 e^{t/\tau_a}$

- Where τ_a is the growth time of the disturbance
- τ_a (Eqn 6-158) is a function of sinh, cosh(2πb/λ) multiplied by

$$\frac{4\mu}{(\rho_2 - \rho_1)gb}$$

 τ_a depends on wavelength, but if have displacements at multiple wavelengths, fastest growing wavelength will dominate (τ_a is a minimum)

Stokes' Flow: How fast does a body fall due to its own weight?

- Applies in limit of very viscous fluid, with Re<1 (reversible flow)
- Applications:
 - Fall of pieces of slab
 - Rise of plumes/magma
 - Fall of metal probe

Ball rises through stationary fluid or fluid flows past stationary ball

Sphere Falling in a Fluid

Sphere Falling in a Fluid

 $Fg + F_B + F_D = 0$

Fall of Iron into Core

Stevenson, David J. Mission to Earth's Core -A Modest Proposal. Nature, 423, 239-240, 2003. (in course notes)

About 1 week to get to core

Balance gravity (Buoyancy) and Viscous drag forces

• Dominant equations: continuity equation and pressure equation again, same as before but now geometry and boundary conditions change

$$\vec{\nabla} \cdot \vec{u} = 0 \qquad \vec{\nabla} P = \mu \nabla^2 u$$

- Where P=p-pgy
- ρ_f =density of fluid
- ρ_s =denisty of sphere

$$\operatorname{Re} = \frac{\rho_f U(2a)}{\mu}$$

Boundary Conditions

• As $r \rightarrow \infty$ $u_r \rightarrow -U$ in z direction $u_r \rightarrow -U\cos\theta$ $u_{\theta} \rightarrow U\sin\theta$ No-slip on sphere: at r=a $u_r = u_{\theta} = 0$

Spherical Coordinates:

Continuity equation becomes:

$$0 = \vec{\nabla} \cdot \vec{u} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (u_\theta \sin \theta) + (\frac{1}{r \sin \theta} \frac{\partial u_\phi}{\partial \phi})$$

But since u_{Φ} =0, last term is 0

To solve equation, also need the Laplacian of u:

$$\nabla^{2}\vec{u} = \vec{\nabla}(\vec{\nabla}\cdot\vec{u}) - \vec{\nabla}\times(\vec{\nabla}\times\vec{u})$$
$$\vec{\nabla}\times\vec{u} = \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial\theta}(u_{\phi}\sin\theta) - \frac{\partial u_{\theta}}{\partial\phi}\right]\hat{r} + \frac{1}{r} \left[\frac{1}{\sin\theta}\frac{\partial u_{r}}{\partial\phi} - \frac{\partial(ru_{\theta})}{\partial r}\right]\hat{\theta} + \frac{1}{r} \left[\frac{\partial(ru_{\theta})}{\partial r} - \frac{\partial u_{r}}{\partial\theta}\right]\hat{\phi}$$

Pressure forces: Terms in P

Viscous forces: Terms in $\mu \nabla^2 u$

Solution

- Surprisingly, most terms drop out and ...
- Pressure due to fluid flow is (Eq 6-216):

$$p = \frac{3\mu aU}{2r^2}\cos\theta$$

• Integrate to get downward "drag" (force) due to fluid pressure across sphere: $D_p=2\pi\mu aU$

Viscous drag:

• Using 3-D formulation of stress again:

 $\vec{\tau} = \mu(\vec{\nabla}\vec{u} + \vec{\nabla}\vec{u}^T)$

Integrate to get Viscous Drag $D_v=4\pi\mu aU$ So total Drag F_D = Viscous Drag + Pressure Drag = D_p + $D_v=6\pi\mu aU$

Speed of rise or fall:

- Balance Buoyancy Forces with Drag forces for steady-state case (no acceleration):
- $F_B = (\rho_f \rho_s)g4\pi a^3/3 = F_D = 6\pi\mu aU$
- Solve for U

Pres

 For faster flow, Re>1, more difficult: use dimensionless drag coefficient C_D

$$C_{D} = \frac{F_{D}}{\frac{1}{2}\rho_{f}U^{2}\pi a^{2}} = \frac{24}{\text{Re}}(6-226)$$
source due to vel. Sphere x-sec area (shado

Note—units work out in both cases

Compare to pipe flow:

Depends on dimensionless variables: Friction factor *f* and Reynolds number *Re*

$$f \equiv \frac{-4R}{\rho \overline{u}^2} \frac{dp}{dx}$$

