
Notes for Assignment 2 

Maths 323 fluids 2014 

 

 Last time: 

Continuity Equation (Sec 6-7) 

Force Balance (Sec 6-8) 

Stream Function (Sec 6-9) 

Postglacial Rebound (Sec 6-10) 

Angle of Subduction (Sec. 6-11) 

Diapirs intro (Sec 6-12) 



Notes for Assignment 2 

Maths 323 fluids 2014 Day 2 

 

 This time: 

Diapirs (Sec 6-12) 

Stokes Flow (Sec 6-14) 



Equations so far 
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Continuity Equation in 2D 
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Balance of pressure and viscous forces 

Where P=p-gy=deviatoric stress  
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Stream function  

Biharmonic Equation:  

 

Flow rate from integral of stream 

function AB
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Diapirs (Rayleigh-Taylor 

Instabilities) (not nappies) 
• Driven by gravity and density 

imbalances—high over low 

• Examples: 

– Paint dripping 

– Mantle “drips” 

– Start of convection, plumes, lava lamps 

– Salt domes 

• Could grow exponentially until it breaks 

up, or could die out--returning to original 

state (but not periodic—not elastic) 



Salt Domes 

Images from : 

http://geology.com/stories/13/salt-

domes/ 



Basic Eqn:  Incompressible 

continuity Eqn  0or  0 4  u


Balance Buoyancy Forces by Pressure Forces: 
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P=Pressure 

generated by 

fluid flow 
p=pressure Buoyancy=gy 

uP 2 


=0 if forces are in balance (e.g., eqn 6-151) 

(6-67 to 6-68) 

To solve eqn—introduce stream function  

Like postglacial rebound or subducting plate—but boundary 

conditions differ 



• Boundary conditions: 
– 1)Rigid at top and bottom (-b1 and b2)—no slip 

condition (u continuous) 

u=v=0 at y= -b1 and b2 

– 2) Displacements and velocities and shear stress 

must be continuous across boundary between media 

(i.e., at interface, but since w is small, effectively y=0 

here) 

 

 

y=-b1 

y=b2 

In general, b1b2 

Displacement w<< b1 and b2 

 -- approximation is very 

important –i.e.,  

Interface shape is 

w=Acos2x/ 

 

Because A is small, can treat 

interface as if it were at y=0 for 

the purposes of solving 

boundary conditions 

Wavelength= 

u1 

v1 

u2 

v2 



Guess solutions of  

• 1; 2  separate for each of top, bottom. 

•  is similar in form to postglacial rebound, 

but uses hyperbolic functions instead of 

simple sines and cosines: 
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(similar expression for 2)  
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Solve by: 

• Show that both 1,2 are solns by 

substituting back into eqn, 

• Determine u1,2 and v1,2 from derivatives of 

1,2    

•   

• Boundary conditions: 

• u=v=0 at y= -b1 and b2  u(x,y) become 

 u1(x,-b1)=0; v1(x,-b1)=0 

 u2(x,b2)=0; v2(x,b2)=0 
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• Boundary conditions: 
– 1)Rigid at top and bottom (-b1 and b2)—no slip 

condition (u continuous) 

u=v=0 at y= -b1 and b2 

– 2) Displacements and velocities and shear stress 

must be continuous across boundary between media 

(i.e., at interface, but since w is small, effectively y=0 

here) 

 

 

u1 

v1 

u2 

v2 



2) velocities and shear stress must be continuous across 

boundary between media (i.e., at y=0 here because w is 

small) 

• u1(x,0)=u2(x,0); v1(x,0)=v2(x,0) 

 

 

 

• (x dependence is purely a function of 

sin(2x/)) 

• Another key—interface is moving with the 

same velocity as the fluid, so at y=0 
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Finally, balance forces--buoyancy and fluid 

flow pressure 

0yat  )()( 1221  PPgw
Buoyancy 

Flow pressure found from integrating 6-72 

 

)(
3

3

2

3

yyxx

P













 


displaced original 



Final solution after much 

algebra: • Solution: 

 

 

• Where a is the growth 

time of the disturbance 

• a (Eqn 6-158) is a 

function of sinh, 

cosh(2b/) multiplied by  

 
• a depends on 

wavelength, but if have 

displacements at multiple 

wavelengths,  fastest 

growing wavelength will 

dominate (a  is a 

minimum) 
Dimensionless wavenumber 
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Stokes’ Flow: How fast does a 

body fall due to its own weight? 
• Applies in limit of very viscous fluid, with 

Re<1 (reversible flow)  

• Applications: 

– Fall of pieces of slab 

– Rise of plumes/magma bubbles 

– Fall of metal probe 

U 

Ball rises through 

stationary fluid or 

fluid flows past 

stationary  ball 



Sphere Falling in a Fluid 

a 

v 

Fluid viscosity η 



Sphere Falling in a Fluid 

a 

v 

Fluid viscosity η 

Fg 

FB 
FD Fg+ FB+ FD=0 

 



Fall of Iron into 

Core 

Stevenson, David J. Mission to 

Earth’s Core -A Modest 

Proposal. Nature, 423, 239-240, 

2003. (in course notes) 

 

 About 1 week to get to core 



Balance gravity (Buoyancy) and 

Viscous drag forces 
• Dominant equations:  continuity equation and pressure 

equation again, same as before but now geometry and 

boundary conditions change 

 

• Where P=p-gy 

 

• f=density of fluid 

• s=denisty of sphere 
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Boundary Conditions 

• As r  

 ur-U in z direction 

 ur-Ucos  u  Usin 

No-slip on sphere:  at r=a 

  ur=u  =0 

 



Spherical Coordinates: 
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Continuity equation becomes: 

But since u=0, last term is 0 

To solve equation, also need the Laplacian of u: 
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Pressure forces:  Terms in P 

 

Viscous forces:  Terms in  u2



Solution 

• Surprisingly, most terms drop out and … 

• Pressure due to fluid flow is (Eq 6-216):  

 

 

• Integrate to get downward “drag” (force) 

due to fluid pressure across sphere: 

Dp=2aU 
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Viscous drag: 

• Using 3-D formulation of stress again: 

 

Integrate to get Viscous Drag Dv=4aU 

So total Drag FD= Viscous Drag + Pressure 

Drag = Dp+ Dv=6aU 
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Speed of rise or fall: 

• Balance Buoyancy Forces with Drag forces for 

steady-state case (no acceleration): 

• FB=(f- s)g4a3/3= FD = 6aU 

• Solve for U 

• For  faster flow, Re>1, more difficult: use 

dimensionless drag coefficient CD 
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Pressure due to vel.  Sphere x-sec area (shadow) 



• Stokes 

flow: 

 

 

• Re>1: 
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Note—units work out in both cases 

Turbulent 

flow 

 

Laminar 

flow 
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Compare to pipe flow: 

laminar turbulent 

Depends on dimensionless 

variables:  Friction  factor f and 

Reynolds number Re 

dx

dp
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Turbulent 

flow 

 

Laminar 

flow 

 


