Notes for Assignment 2
Maths 323 fluids 2014

Last time:

Continuity Equation (Sec 6-7)
Force Balance (Sec 6-8)
Stream Function (Sec 6-9)
Postglacial Rebound (Sec 6-10)
Angle of Subduction (Sec. 6-11)
Diapirs intro (Sec 6-12)



Notes for Assignment 2
Maths 323 fluids 2014 Day 2

This time:
Diapirs (Sec 6-12)
Stokes Flow (Sec 6-14)



Equations so far

Continuity Equation in 2D
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Diapirs (Rayleigh-Taylor
Instablilities) (not nappies)

* Driven by gravity and density
Imbalances—nhigh over low

« Examples:
— Paint dripping
— Mantle “drips”
— Start of convection, plumes, lava lamps
— Salt domes

« Could grow exponentially until it breaks
up, or could die out--returning to original
state (but not periodic—not elastic)



Salt Domes

=
=
o
8 Uy o,
< | 0,
= |= TaLcoFaULT e, Yy, Okp g ANGELINA-CALOWELL
Az ZONE %, . g, o, FLEXURE
KM - 3 S

—,—__\
pasns =
P // T S
5 et ~= . _-—’——’_" se——rs

- —— : ——_ 4 Sa” Dome ‘ -- "-A -—':— -— 7‘ j_

D -

st Ol Y Oil

' y IR e P oY

4 '/’\ o G
I

\__// , P

Coastline

Images from :
http://geology.com/stories/13/salt-

domes/



Basic Egn: Incompressible
continuity EQn v.g=o0or vy =0

Balance Buoyancy Forces by Pressure Forces:

VP =V(p— pgy)

P=Pressure

generated by (“p=pressure) Buoyancy=pgy
fluid flow

VP = 4V (66710668

=0 if forces are in balance (e.g., eqn 6-151)

To solve egn—introduce stream function v
Like postglacial rebound or subducting plate—but boundary
conditions differ



6-21 The Rayleigh-Taylor instability of a dense fluid overlying a lighter

fluid. In general, b,#b,
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r y=-b Displacement w<< b, and b,
P11 7 ) ' approximation is very
! important —i.e.,
- Interface shape is
- W=AcC0S2mx/\
b
y=b Because A is small, can treat
‘ \\\\\\\\‘7‘\"\\\\\'\\\\?ﬁ\\i‘\\\\\\\\\\\“ Y=b2 interface as if it were at y=0 for
avelength= :
X J the purposes of solving

boundary conditions

* Boundary conditions:

— 1)Rigid at top and bottom (-b, and b,)—no slip
condition (u continuous)

-.u=v=0 at y= -b, and b,
— 2) Displacements and velocities and shear stress
must be continuous across boundary between media

(.e., at interface, but since w is small, effectively y=0
here)



Guess solutions of y

* y,; Y, Separate for each of top, bottom.

* y IS similar In form to postglacial rebound,
but uses hyperbolic functions instead of

simple sines and cosines: X _ X
3—21 The Rayleigh-Taylor instability of a dense fluid overlying a lighter S I n h ( X) —
id.
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Solve by:

Show that both v, , are solns by
substituting back into eqn,

Determine u, , and v, , from derivatives of

Y12 oWy,
U,=—""—",V, =
oy

Boundary conditions:

u=v=0 at y= -b, and b, =» u(x,y) become
u,(X,-b,)=0; v,(X,-b1)=0

Uy(X,05)=0; V,(X,b,)=0

0 Wi,
OX



6-21 The Rayleigh-Taylor instability of a dense fluid overlying a lighter

fluid.
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* Boundary conditions:

— 1)Rigid at top and bottom (-b, and b,)—no slip
condition (u continuous)

-.u=v=0 at y= -b, and b,
— 2) Displacements and velocities and shear stress
must be continuous across boundary between media

(.e., at interface, but since w is small, effectively y=0
here)




2) velocities and shear stress must be continuous across
boundary between media (i.e., at y=0 here because w Is
small)

* Uy(X,0)=u,(x,0); v4(X,0)=Vv,(X,0)
= y(a—u - ?) IS same at boundary,

ou, (X, O) oV (x O)) _ (8u2(x,0) N oV, (x,0)

oy oy 8X)

£4(

* (X dependence is purely a function of
SIN(2nXx/A))

* Another key—interface is moving with the

same velocity as the fluid, so at y=0

OW
—=V(x,0
= (x,0)



Finally, balance forces--buoyancy and fluid
flow pressure

6-22 The buoyancy force associated with the displacement of the

interface.
%
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(o —pr)aw=(P,—R)aty=0

Flow pressure found from integrating 6-72
Buoyancy
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Final solution after much

Solution:

W = Woet/ra
Where 1, is the growth
time of the disturbance
7, (Eqn 6-158) Is a
function of sinh,
cosh(2nb/A) multiplied by

4u

(0, —p1)ab
1, depends on
wavelength, but if have
displacements at multiple
wavelengths, fastest
growing wavelength will
dominate (1, is a
minimum)

algebra:
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Stokes’ Flow: How fast does a

body fall due to its own weight?
* Applies in limit of very viscous fluid, with

Re<1 (reversible flow)
* Applications: l l l

—all of pieces of slab
RIse of plumes/magma

~all of metal probe

Ball rises through

stationary fluid or
U fluid flows past

stationary ball

6~31 Steady flow of a viscous flyid past a sphere.



Fluid viscosity n




Fluid viscosity n




7 Fall of Iron into

propagating C ore

crack

7

communication

embedded probe

seismic

mantle

Stevenson, David J. Mission to
Earth’s Core -A Modest
Proposal. Nature, 423, 239-240,
2003. (in course notes)

About 1 week to get to core




Balance gravity (Buoyancy) and
Viscous drag forces

Dominant equations: continuity equation and pressure
equation again, same as before but now geometry and
boundary conditions change

V-i=0 VP = VA
Where P=p-pgy

ps—=density of fluid
ps=denisty of sphere

- pU (2a)
IL[ 6~31 Steady flow of a vis

Re

cous fluid past a sphere,



Boundary Conditions

e AS =
u~>»-U Iin z direction
u~>»-Ucos6 u,=>Usind
No-slip on sphere: atr=a
u=u,=0




Spherical Coordinates:

Continuity equation becomes:

oﬁ-uzizﬁ(rzum _1 2 (u,sin @) +( - )
r or rsiné oo rSige 8¢
But since u,=0, lasttermis O
To solve equation, also need the Laplacian of u:
0=V(V-0)- Vx(qu)
= 1 [ «, Sne)__g] [ 1 ou, a(rug)]e [a(rue) Gur
rsingd o6 0P r sind o¢ or r- or

Pressure forces: Termsin P

Viscous forces: Terms in

uV*u

]¢



Solution

« Surprisingly, most terms drop out and ...
* Pressure due to fluid flow is (Eq 6-216):

p:3ya2U cos &

2r

* Integrate to get downward “drag” (force)
due to fluid pressure across sphere:
D,=2rmual



Viscous drag:

» Using 3-D formulation of stress again:
7F=u(Vi+Vi")
Integrate to get Viscous Drag D,~=4nualU

So total Drag Fp= Viscous Drag + Pressure
Drag = D,+ D,=6nuaU



Speed of rise or fall:

Balance Buoyancy Forces with Drag forces for
steady-state case (no acceleration):

Fe=(pr ps)94ma’/3= Fp = 6rual
Solve for U

For faster flow, Re>1, more difficult: use
dimensionless drag coefficient C,
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Laminar Turbulent
flow flow

AN
Stoles flow N\




Compare to pipe flow:
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laminar turbulent

Depends on dimensionless
variables: Friction factor f and
Reynolds number Re

=—4de
~ pu? dx
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6-7 Dependence of the fridion factor £ on the Reynolds number Re for
Faminar flow, from Equation (6-21), and far turbufent flew, from Equa-

fion (642},
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