Notes for Assignment 2 Maths 323 fluids 2014

Continuity Equation (Sec 6-7) Force Balance (Sec 6-8) Stream Function (Sec 6-9) Postglacial Rebound (Sec 6-10) Angle of Subduction (Sec. 6-11) Diapirs (Sec 6-12) Stokes Flow (Sec 6-14)

Continuity Eqn:

For incompressible fluids—conservation of fluid "What goes in must come out"

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

where
$$u = \frac{\partial x}{\partial t}; v = \frac{\partial y}{\partial t}$$

Note: For 2-D case, often y is used for the vertical direction—for 3-D, usually z is vertical.

Continuity Eqn:

For incompressible fluids—conservation of fluid

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

where
$$u = \frac{\partial x}{\partial t}; v = \frac{\partial y}{\partial t}$$

3-D $\vec{\nabla} \cdot \vec{u} = 0$ Or in longer form: $\frac{\partial}{\partial x_{i}} (u_{j}(\vec{x})) = 0$

Compressible fluids (3-D)

$$\frac{\partial}{\partial t}(\rho(\vec{x})) + \frac{\partial}{\partial x_j}(\rho(\vec{x})u_j(\vec{x})) = 0$$

Viscous stresses and force balance-2D

$$\vec{F} = m\vec{a}$$
 =0

) (Neglect celeration) Force and acceleration are vectors

 $\vec{F} = \sum_{i} \vec{f}_{i} = \sum_{i} \text{Pressure forces +}$ Viscous forces + gravity forces

$$\vec{F} = \sum_{i} \vec{f}_{i} = \left(\sum_{i} \left(\vec{p}_{i}a_{i} + \left(\sum_{j} \vec{\tau}_{ij}a_{ij}\right)\right) + \rho g V \hat{y}\right)$$

Gravity force acts only in vertical (y) direction

a=area, V=volume g=acceleration of gravity p=pressure τ =stress ρ =density

Viscous stresses and force balance-2D

 $x_1 = x$ $x_2 = y$

 $X_3 = Z$

Book uses y=depth (2-D case)

 $y + \delta y$

6-II Pressure forces acting on an infinitesimal rectangular fluid element. $p(y)\delta x$ y $x + \delta x$ δx δy $p(x + \delta x)\delta y$ δy δy $\varphi(x) = p(x)\delta y$

 $p(y + \delta y) \delta x$

 Pressure=pos. inward —perpendicular to faces-Often assumed constant or Given by hydrostatic overburden (gravity acting on whole column above) 2) Gravity force = ρ^* (volume)*g (just gravity on the element itself)

6-12 Viscous forces acting on an infinitesimal two-dimensional rectangular fluid element.

3) Viscous forces are due to fluid movement and are parallel or perpendicular to faces

Pressure Forces
$$\rightarrow$$
 always inward

$$F = \sum_{i} f_{i} = (\sum_{i} (p_{i}a_{i} + (\sum_{j} \vec{\tau}_{ij}a_{ij})) + \rho g V \hat{y} \text{ a=area,}_{V=volume})$$

$$\sum_{i} p_{i}a_{i} = \vec{p}_{y}(y)dxdz + \vec{p}_{x}(x)dydz - \vec{p}_{y}(y+dy)dxdz - \vec{p}_{x}(x+dx)dydz + (p_{z}...)$$

Assume 3^{rd} dimension, dz =1; write out explicitly x and y components

$$\sum_{i} p_{i}a_{i} = \vec{p}_{y}(y)dx + \vec{p}_{x}(x)dy - \vec{p}_{y}(y+dy)dx - \vec{p}_{x}(x+dx)dy$$

Note: Vector nature of pressure components in both y and x direction (z direction too, but is constant and neglected)

$$\vec{p}_x(x) - \vec{p}_x(x + dx) = \frac{-\partial p}{\partial x}\hat{x}$$
$$\vec{p}_y(y) - \vec{p}_y(y + dy) = \frac{-\partial p}{\partial x}\hat{y}$$

Viscous forces-normal stresses act outwards here

 $F_{x}(viscous) = \tau_{xx}(x+dx)dydz - \tau_{yx}(y)dxdz - \tau_{xx}(x)dydz + \tau_{yx}(y+dy)dxdz$

 $F_{x}(viscous) = \tau_{xx}(x+dx)dy - \tau_{yx}(y)dx - \tau_{xx}(x)dy) + \tau_{yx}(y+dy)dx$

(Letting dz=1) Similar expression for F_{y}

Stream Function ψ --a potential

- Like P- and S-wave potentials in seismology, and potentials in quantum mechanics:
- Define ψ such that
- (2-D) $u = -\frac{\partial \psi}{\partial v}; v = \frac{\partial \psi}{\partial x}$
 - Eq(6-67) $\frac{\partial P}{\partial x} = \mu (\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2})$ Eq(6-68) $\frac{\partial P}{\partial y} = \mu (\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2})$

 $\vec{\psi} = (0,0,\psi)$ $\vec{u} = (u,v,0)$ $\vec{u} = \vec{\nabla} \times \vec{\psi}$

3-D

Substitute into previous equations

Eqn of motion reduces to Biharmonic Eqn:

- ∇⁴ ψ=0
 Soln:
- Soln: $Q = \int d\psi = \psi_B - \psi_A$

 Volumetric flow rate between two points is given by the difference in the stream function

Isostacy

- Solids floating on fluids displace their own weight in the fluid
- E.g., icebergs in water:

• "Airy" Isostacy:

Compensation depth

Gravity anomalies

- Earth's gravity field changes due to presence or absence of masses (density differences) of rock/air/water
- This is measurable with very sensitive instruments called gravimeters
- There are several types of corrections that need to be applied to be able to convert the gravity measurements to fields that depend on rock density.

Free air correction

 One of most important is the "free air correction". It corrects for the height difference between spots on the earth. (Gravity decreases as 1/R² from the center of the Earth so if you are higher, you are further away and gravity is somewhat smaller). Further details are in Turcotte & Schubert Ch 5 or ESCI 305 class.

Free air gravity anomaly

 For the purpose of the assignment question 6-12 all you need to know is that the free air gravity anomaly will be given by

$$g_{FA} = 2\pi\Delta\rho Gh$$

- Where ∆p=difference in density between two materials (here air vs mantle) G=universal gravitational constant
- *h*=distance over which density difference occurs

"Airy" Isostacy

$\rho_1 h_1 + \rho_2 h_2 = \rho_1 z_1 + \rho_2 z_2$

Compensation depth

Glacier effects

Before glacier during glacier after glacier

Solve biharmonic equation

$$w_m = w_{m0} \cos(\frac{2\pi x}{\lambda})$$

mantle

 $\psi = A\sin(\frac{2\pi x}{\lambda})e^{-2\pi y/\lambda}(1 + \frac{2\pi y}{\lambda})$

- Solve Biharmonic equation $\nabla^4 \psi = 0$ Use Separation of variables: Assume solution of Eq 6-80 $\psi = \sin(\frac{2\pi x}{\lambda})Y(y)$
- Show that it works
- Result:6-90 to 6-92
- Surprisingly simple result $\begin{array}{l} u = ... \\ y = ... \\ w = w_m \exp(-\frac{t}{\tau_r}) \end{array}$ Where τ_r =relaxation time depends on

viscosity and other parameters

Image of postglacial rebound

http://en.wikipedia.org/wiki/File:Rebounding_beach,_among_other_things_(9404384 095).jpg

Angle of Subduction Good example of using boundary conditions for a slightly more complex problem—now need to include gravity.

Balance of Torques from

- a) Gravity
- b) Flow pressure induced by motion of descending lithosphere (trench suction)

Note tighter streamlines in corner due to geometry→ pressure difference from bottom to top of slab. Also note that both top & bottom flow pressures are in same direction.

Also—after calculations, top exerts more torque than bottom (similar to why airplanes fly)

Angle of subduction

V

 Solution to continuity equation is the Biharmonic equation

 $\nabla^4 \psi = 0$

Assume sol'n:

- Plug into eqn and show that it works
- Use eqns that we learned this week to take derivatives of ψ to get u and v, and pressures τ from the flow.

$$v = (Ax + By) + (Cx + Dy) \arctan(\frac{y}{x})$$
$$u = -\frac{\partial \psi}{\partial y}; v = \frac{\partial \psi}{\partial x}$$
$$EQ 6-1 \qquad \mu \frac{du}{dy}$$

Don't forget!

- Derivatives of tan and arctan
- Torque = Force x Distance (cross product—or take moment arm from perpendicular)
- Too hard to do general case—book does specific case of dip=45 degrees—you will do dip = 60 degrees.

Diapirs (Rayleigh-Taylor Instabilities) (not nappies)

- Driven by gravity and density imbalances—high over low
- Examples:
 - Paint dripping
 - Mantle "drips"
 - Start of convection, plumes, lava lamps
 - Salt domes
- Could grow exponentially until it breaks up, or could die out--returning to original state (but not periodic—not elastic)

Basic Eqn: Incompressible continuity Eqn $\vec{\nabla} \cdot \vec{u} = 0 \text{ or } \nabla^4 \psi = 0$

Balance Buoyancy Forces by Pressure Forces:

=0 if forces are in balance (e.g., eqn 6-151)

To solve eqn—introduce stream function ψ Like postglacial rebound or subducting plate—but boundary conditions differ

In general, $b_1 \neq b_2$

Displacement w<< b₁ and b₂ -- approximation is very important –i.e., Interface shape is w=Acos2πx/λ

Because A is small, can treat interface as if it were at y=0 for the purposes of solving boundary conditions

- Boundary conditions:
 - 1)Rigid at top and bottom (-b₁ and b₂)—no slip condition (u continuous)
 - \therefore u=v=0 at y= -b₁ and b₂
 - 2) Displacements and velocities and shear stress must be continuous across boundary between media (i.e., at interface, but since w is small, effectively y=0 here)

Guess solutions of $\boldsymbol{\psi}$

- ψ_1 ; ψ_2 separate for each of top, bottom.
- ψ is similar in form to postglacial rebound, but uses hyperbolic functions instead of simple sines and cosines: $\sinh(x) = \frac{e^x - e^{-x}}{2}$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$\psi_1 = \sin\frac{2\pi x}{\lambda} (A_1 \cosh\frac{2\pi y}{\lambda} + B_1 \sinh\frac{2\pi y}{\lambda} + C_1 y \cosh\frac{2\pi y}{\lambda} + D_1 y \sinh\frac{2\pi y}{\lambda})(6-125)$$

(similar expression for ψ_2)

Solve by:

- Show that both $\psi_{1,2}$ are solns by substituting back into eqn,
- Determine $u_{1,2}$ and $v_{1,2}$ from derivatives of $\psi_{1,2}$ $u_{1,2} = -\frac{\partial \psi_{1,2}}{\partial y}; v_{1,2} = \frac{\partial \psi_{1,2}}{\partial x}$
- Boundary conditions:
- u=v=0 at y= -b₁ and b₂ → u(x,y) become
 u₁(x,-b₁)=0; v₁(x,-b₁)=0
 u₂(x,b₂)=0; v₂(x,b₂)=0

In general, $b_1 \neq b_2$

Displacement w<< b₁ and b₂ -- approximation is very important –i.e., Interface shape is w=Acos2πx/λ

Because A is small, can treat interface as if it were at y=0 for the purposes of solving boundary conditions

- Boundary conditions:
 - 1)Rigid at top and bottom (-b₁ and b₂)—no slip condition (u continuous)
 - \therefore u=v=0 at y= -b₁ and b₂
 - 2) Displacements and velocities and shear stress must be continuous across boundary between media (i.e., at interface, but since w is small, effectively y=0 here)

velocities and shear stress must be continuous across boundary between media (i.e., at y=0 here because w is small)

• $u_1(x,0)=u_2(x,0); v_1(x,0)=v_2(x,0)$

$$\tau_{xy} = \mu(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) \text{ is same at boundary,}$$
$$\mu(\frac{\partial u_1(x,0)}{\partial y} + \frac{\partial v_1(x,0)}{\partial x}) = \mu(\frac{\partial u_2(x,0)}{\partial y} + \frac{\partial v_2(x,0)}{\partial x})$$

- (x dependence is purely a function of sin(2πx/λ))
- Another key—interface is moving with the same velocity as the fluid, so at y=0 $\frac{\partial w}{\partial t} = v(x,0)$

Finally, balance forces--buoyancy and fluid flow pressure

$$(\rho_1 - \rho_2)gw = (P_2 - P_1) \text{ at } y = 0$$
Flow pressure found from integrating 6-72

Buoyancy

$$\frac{\partial P}{\partial x} = -\mu(\frac{\partial^3 \psi}{\partial x^2 \partial y} + \frac{\partial^3 \psi}{\partial y^3})$$

Final solution after much algebra:

• Solution:

 $w = w_0 e^{t/\tau_a}$

- Where τ_a is the growth time of the disturbance
- Is a function of sinh, cosh(2πb/λ) multiplied by

 $\frac{4\mu}{(\rho_2 - \rho_1)gb}$ τ_a depends on wavelength, but if have displacements at multiple wavelengths, fastest growing wavelength will dominate (τ_a is a minimum)

Stokes' Flow: How fast does a body fall due to its own weight?

- Applies in limit of very viscous fluid, with Re<1 (reversible flow)
- Applications:
 - Fall of pieces of slab
 - Rise of plumes/magma
 - Fall of metal probe

Ball rises through stationary fluid or fluid flows past stationary ball

Sphere Falling in a Fluid

Sphere Falling in a Fluid

 $Fg + F_B + F_D = 0$

Fall of Iron into Core

Stevenson, David J. Mission to Earth's Core -A Modest Proposal. Nature, 423, 239-240, 2003.

About 1 week to get to core

Balance gravity (Buoyancy) and Viscous drag forces

• Dominant equations: continuity equation and pressure equation again, same as before but now geometry and boundary conditions change

$$\vec{\nabla} \cdot \vec{u} = 0 \qquad \vec{\nabla} P = \mu \nabla^2 u$$

- Where P=p-pgy
- ρ_f =density of fluid
- ρ_s =denisty of sphere

$$\operatorname{Re} = \frac{\rho_f U(2a)}{\mu}$$

Boundary Conditions

• As $r \rightarrow \infty$ $u_r \rightarrow -U$ in z direction $u_r \rightarrow -U\cos\theta \quad u_{\theta} \rightarrow U\sin\theta$ No-slip on sphere: at r=a $u_r = u_{\theta} = 0$

Spherical Coordinates:

Continuity equation becomes:

$$0 = \vec{\nabla} \cdot \vec{u} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (u_\theta \sin \theta) + (\frac{1}{r \sin \theta} \frac{\partial u_\phi}{\partial \phi})$$

But since u_{Φ} =0, last term is 0

To solve equation, also need the Laplacian of u:

$$\nabla^{2}\vec{u} = \vec{\nabla}(\vec{\nabla}\cdot\vec{u}) - \vec{\nabla}\times(\vec{\nabla}\times\vec{u})$$
$$\vec{\nabla}\times\vec{u} = \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial\theta}(u_{\phi}\sin\theta) - \frac{\partial u_{\theta}}{\partial\phi}\right]\hat{r} + \frac{1}{r} \left[\frac{1}{\sin\theta}\frac{\partial u_{r}}{\partial\phi} - \frac{\partial(ru_{\theta})}{\partial r}\right]\hat{\theta} + \frac{1}{r} \left[\frac{\partial(ru_{\theta})}{\partial r} - \frac{\partial u_{r}}{\partial\theta}\right]\hat{\phi}$$

Pressure forces: Terms in P

Viscous forces: Terms in $\mu \nabla^2 u$

Solution

- Surprisingly, most terms drop out and ...
- Pressure due to fluid flow is (Eq 6-216):

$$p = \frac{3\mu aU}{2r^2}\cos\theta$$

• Integrate to get downward "drag" (force) due to fluid pressure across sphere: $D_p=2\pi\mu aU$

Viscous drag:

• Using 3-D formulation of stress again:

 $\vec{\tau} = \mu(\vec{\nabla}\vec{u} + \vec{\nabla}\vec{u}^T)$

Integrate to get Viscous Drag $D_v=4\pi\mu aU$ So total Drag F_D = Viscous Drag + Pressure Drag = D_p + $D_v=6\pi\mu aU$

Speed of rise or fall:

- Balance Buoyancy Forces with Drag forces for steady-state case (no acceleration):
- $F_B = (\rho_f \rho_s)g4\pi a^3/3 = F_D = 6\pi\mu aU$
- Solve for U

Pres

 For faster flow, Re>1, more difficult: use dimensionless drag coefficient C_D

$$C_{D} = \frac{F_{D}}{\frac{1}{2}\rho_{f}U^{2}\pi a^{2}} = \frac{24}{\text{Re}}(6-226)$$
source due to vel. Sphere x-sec area (shado)

$$C_{D} \equiv \frac{F_{D}}{\frac{1}{2}\rho_{f}U^{2}\pi a^{2}} = \frac{24}{\text{Re}}(6-226)$$

Note—units work out in both cases