Notes for Assignment 2 Maths 323 fluids 2014

Continuity Equation (Sec 6-7)
Force Balance (Sec 6-8)
Stream Function (Sec 6-9)
Postglacial Rebound (Sec 6-10)
Angle of Subduction (Sec. 6-11)
Diapirs (Sec 6-12)
Stokes Flow (Sec 6-14)

Continuity Eqn:

For incompressible fluids-conservation of fluid

 "What goes in must come out"$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
& \text { where } \\
& u=\frac{\partial x}{\partial t} ; v=\frac{\partial y}{\partial t}
\end{aligned}
$$

Note: For 2-D case, often y is used for the vertical direction-for 3D, usually z is vertical.

6-10 Flow across the surfaces of an infinitesimal rectangular element

Continuity Eqn:

For incompressible fluids-conservation of fluid

$$
\begin{aligned}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
& \text { where } \\
& u=\frac{\partial x}{\partial t} ; v=\frac{\partial y}{\partial t}
\end{aligned}
$$

Compressible fluids (3-D)

$$
\frac{\partial}{\partial t}(\rho(\vec{x}))+\frac{\partial}{\partial x_{j}}\left(\rho(\vec{x}) u_{j}(\vec{x})\right)=0
$$

Viscous stresses and force balance-2D

$$
\begin{aligned}
& \vec{F}=m \vec{a} \vec{a} \\
& \vec{F}=\sum_{i} \vec{f}_{i}=\sum_{\substack{\text { Viscous forces }+ \text { gravity } \\
\text { forces }}}^{\left.\begin{array}{l}
\text { Pressure fores }
\end{array}\right)} \\
& \vec{F}=\sum_{i} \vec{f}_{i}=\left(\sum_{i}\left(\vec{p}_{i} a_{i}+\left(\sum_{j} \vec{\tau}_{i j} a_{i j}\right)\right)+\rho g V \hat{y}\right. \\
& \text { Gravity force acts only in vertical (y) direction } \\
& \text { Force and } \\
& \text { acceleration } \\
& \text { are vectors } \\
& \text { a=area, } \\
& \text { V=volume } \\
& g=\text { acceleration of } \\
& \text { gravity } \\
& \text { p=pressure } \\
& \tau=\text { stress } \\
& \rho=\text { density }
\end{aligned}
$$

Viscous stresses and force

$X_{1}=X$ balance-2D
$x_{2}=y \quad$ Book uses $y=$ depth (2-D case)

$$
x_{3}=z
$$

6-1I Pressure forces acting on an infinitesimal rectangular fluid element.

1) Pressure=pos. inward -perpendicular to facesOften assumed constant or Given by hydrostatic overburden (gravity acting on whole column above)
2) Gravity force $=\rho^{*}(\text { volume })^{*} g$ (just gravity on the element itself)

6-12. Viscous forces ating on an infinitesimal two-dimensional rectangulas fluid etement.
3) Viscous forces are due to fluid movement and are parallel or perpendicular to faces

Pressure Forces \rightarrow always inward

$$
F=\sum_{i} f_{i}=\left(\sum_{i}\left(p_{i} a_{i}+\left(\sum_{j} \vec{\tau}_{i j} a_{i j}\right)\right)+\rho g V \hat{y} \text { a=area, } \begin{array}{c}
\text { a }=\text { volume }
\end{array}\right.
$$

$\sum_{i} p_{i} a_{i}=\vec{p}_{y}(y) d x d z+\vec{p}_{x}(x) d y d z-\vec{p}_{y}(y+d y) d x d z-\vec{p}_{x}(x+d x) d y d z+\left(p_{z} \ldots\right)$
Assume $3^{\text {rd }}$ dimension, $\mathrm{dz}=1$; write out explicitly x and y components

$$
\sum_{i} p_{i} a_{i}=\vec{p}_{y}(y) d x+\vec{p}_{x}(x) d y-\vec{p}_{y}(y+d y) d x-\vec{p}_{x}(x+d x) d y
$$

Note: Vector nature of pressurecomponents in both y and x direction (z direction too, but is constant and neglected)

$$
\begin{aligned}
& \vec{p}_{x}(x)-\vec{p}_{x}(x+d x)=\frac{-\partial p}{\partial x} \hat{x} \\
& \vec{p}_{y}(y)-\vec{p}_{y}(y+d y)=\frac{-\partial p}{\partial y} \hat{y}
\end{aligned}
$$

Viscous forces-normal stresses act outwards here

$$
\begin{aligned}
F_{x}(v i s c o u s) & =\tau_{x x}(x+d x) d y d z-\tau_{y x}(y) d x d z-\tau_{x x}(x) d y d z+\tau_{y x}(y+d y) d x d z \\
F_{x}(v i s c o u s) & \left.=\tau_{x x}(x+d x) d y-\tau_{y x}(y) d x-\tau_{x x}(x) d y\right)+\tau_{y x}(y+d y) d x
\end{aligned}
$$

(Letting $\mathrm{dz}=1$) Similar expression for F_{y}
 lar fluid element.

Use relationship

$$
\tau_{i j}=\mu \dot{\varepsilon}_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

To get relationship in terms of velocities

Viscous stresses and force

 balance

Let $P=p-\rho g y=$ deviatoric stress i.e. Stress that is different from gravity

$$
\begin{array}{ll}
x_{1}=x & 6-56 \text { to } 6-58 \\
x_{2}=y & \text { Book uses } y=\text { depth (2-D case) } \\
x_{3}=z & \text { (2 }
\end{array}
$$

2-D Pressure=p (pos. inward)

$\tau_{\mathrm{ij}}=$ element of stress tensor, pos. outward
$\operatorname{Eq}(6-67) \frac{\partial P}{\partial x}=\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$
$\operatorname{Eq}(6-68) \frac{\partial P}{\partial y}=\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)$

Force batance, i.e., equation of motion of fluid

$$
\tau_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

$\vec{\tau}=-\mu\left(\vec{\nabla} \vec{u}+\vec{\nabla} u^{T}\right)$
$\vec{\nabla} P=\mu \nabla^{2} \vec{u}$ (if no body forces
--3 D equivalent to 6-67 and 6-68)
Allowing body forees G_{i} gives Navier - Stokes

$$
\rho \mathrm{G}_{\mathrm{i}}-\frac{\partial p}{\partial x_{i}}+\mu \frac{\partial^{2} v_{i}}{\partial x_{i} \partial x_{j}}=0
$$

Stream Function ψ--a potential

- Like P- and S-wave potentials in seismology, and potentials in quantum mechanics:
- Define ψ such that

$$
\begin{aligned}
& 3-\mathrm{D} \\
& \vec{\psi}=(0,0, \psi) \\
& \vec{u}=(u, v, 0) \\
& \vec{u}=\vec{\nabla} \times \vec{\psi}
\end{aligned}
$$

$\operatorname{Eq}(6-67) \frac{\partial P}{\partial x}=\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)$
Substitute into previous
equations
$\mathrm{Eq}(6-68) \frac{\partial P}{\partial y}=\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)$

Eqn of motion reduces to Biharmonic Eqn:

- $\nabla^{4} \psi=0$
- Soln:

$$
Q=\int_{A}^{B} d \psi=\psi_{B}-\psi_{A}
$$

- Volumetric flow rate between two points is given by the difference in the stream function

Isostacy

- Solids floating on fluids displace their own weight in the fluid
- E.g., icebergs in water:
- "Airy" Isostacy:
"Airy" Isostacy (constant pressure at a compensation depth)
$\rho_{1} h_{1}+\rho_{2} h_{2}=\rho_{1} z_{1}+\rho_{2} z_{2} \quad$ (total $\rho g h=$ constant)

Compensation depth

Gravity anomalies

- Earth's gravity field changes due to presence or absence of masses (density differences) of rock/air/water
- This is measurable with very sensitive instruments called gravimeters
- There are several types of corrections that need to be applied to be able to convert the gravity measurements to fields that depend on rock density.

Free air correction

- One of most important is the "free air correction". It corrects for the height difference between spots on the earth. (Gravity decreases as $1 / R^{2}$ from the center of the Earth so if you are higher, you are further away and gravity is somewhat smaller). Further details are in Turcotte \& Schubert Ch 5 or ESCI 305 class.

Free air gravity anomaly

- For the purpose of the assignment question $6-12$ all you need to know is that the free air gravity anomaly will be given by

$$
g_{F A}=2 \pi \Delta \rho G h
$$

- Where $\Delta \rho=$ difference in density between two materials (here air vs mantle) G=universal gravitational constant
- $h=$ distance over which density difference occurs

"Airy" Isostacy

$$
\rho_{1} h_{1}+\rho_{2} h_{2}=\rho_{1} z_{1}+\rho_{2} z_{2}
$$

Compensation depth

Glacier effects

- Before glacier during glacier after glacier

Solve biharmonic equation

$$
w_{m}=w_{m 0} \cos \left(\frac{2 \pi x}{\lambda}\right)
$$

mantle

- Solve Biharmonic equation $\nabla^{4} \psi=0$

Use Separation of variables:
Assume solution of Eq 6-80

$$
\psi=\sin \left(\frac{2 \pi x}{\lambda}\right) Y(y)
$$

- Show that it works
- Result:6-90 to 6-92

$$
\psi=A \sin \left(\frac{2 \pi x}{\lambda}\right) e^{-2 \pi / / \lambda}\left(1+\frac{2 \pi y}{\lambda}\right)
$$

- Surprisingly simple result ${ }_{y=\ldots}^{u=\ldots}$

$$
w=w_{m} \exp \left(-\frac{\iota}{\tau_{r}}\right)
$$

Where $\tau_{\mathrm{r}}=$ relaxation time depends on viscosity and other parameters

Image of postglacial rebound

Mike-Beauregard from Nunavut, Canada http://en.wikipedia.org/wiki/File:Rebounding_beach,_among_other_things_(9404384 095).jpg

Angle of Subduction
 - Good example of using boundary conditions for a slightly more complex problem-now need to include gravity.

Balance of Torques from
a) Gravity
b) Flow pressure induced by motion of descending lithosphere (trench suction) Note tighter streamlines in corner due to geometry \rightarrow pressure difference from bottom to top of slab. Also note that both top \& bottom flow pressures are in same direction.
Also-after calculations, top exerts more torque than bottom (similar to why airplanes fly)

Angle of subduction

6-18 Viscous corner flow model for calculating induced flow pressures on a descending lithosphere.

Coordinate system

$$
\psi=(A x+B y)+(C x+D y) \arctan \left(\frac{y}{r}\right)
$$

$$
u=-\frac{\partial \psi}{\partial y} ; v=\frac{\partial \psi}{\partial x}
$$

$$
\stackrel{\mathrm{EQ}_{\tau}^{6-1}}{=} \mu \frac{d u}{d y}
$$

Don't forget!

- Derivatives of tan and arctan
- Torque = Force \times Distance (cross product-or take moment arm from perpendicular)
- Too hard to do general case-book does specific case of dip=45 degrees-you will do dip = 60 degrees.

Diapirs (Rayleigh-Taylor Instabilities) (not nappies)

- Driven by gravity and density imbalances-high over low
- Examples:
- Paint dripping
- Mantle "drips"
- Start of convection, plumes, lava lamps
- Salt domes
- Could grow exponentially until it breaks up, or could die out--returning to original state (but not periodic-not elastic)

Basic Eqn: Incompressible continuity Eqn $\vec{\nabla} \cdot \vec{u}=0$ or $\nabla^{4} \psi=0$

Balance Buoyancy Forces by Pressure Forces:

$$
\begin{aligned}
& \begin{array}{l}
\qquad \begin{array}{l}
\mathrm{P}=\text { Pressure } \\
\text { generated by } \\
\text { flulid flow }
\end{array}
\end{array} \mathrm{p=pressure} \text { Buoyancy }=\rho g y \\
& \vec{\nabla} P=\mu \nabla^{2} u \quad \text { (6-67 to 6-68) } \\
& =0 \text { if forces are in balance (e.g., eqn 6-151) }
\end{aligned}
$$

To solve eqn-introduce stream function ψ Like postglacial rebound or subducting plate-but boundary conditions differ

6-21 The Rayleigh-Taylor instability of a dense fluid overlying a lighter fluid

In general, $b_{1} \neq b_{2}$
Displacement $w \ll b_{1}$ and b_{2}
-- approximation is very important-i.e., Interface shape is $\mathrm{w}=\mathrm{A} \cos 2 \pi \mathrm{x} / \lambda$

Because A is small, can treat interface as if it were at $y=0$ for the purposes of solving boundary conditions

- Boundary conditions:
- 1)Rigid at top and bottom ($-b_{1}$ and b_{2})-no slip condition (u continuous)
$\therefore u=v=0$ at $\mathrm{y}=-\mathrm{b}_{1}$ and b_{2}
- 2) Displacements and velocities and shear stress must be continuous across boundary between media (i.e., at interface, but since w is small, effectively $y=0$ here)

Guess solutions of ψ

- $\psi_{1} ; \psi_{2}$ separate for each of top, bottom.
- ψ is similar in form to postglacial rebound, but uses hyperbolic functions instead of simple sines and cosines:

$$
\begin{aligned}
& \sinh (x)=\frac{e^{x}-e^{-x}}{2} \\
& \cosh (x)=\frac{e^{x}+e^{-x}}{2}
\end{aligned}
$$

$$
\psi_{1}=\sin \frac{2 \pi x}{\lambda}\left(A_{1} \cosh \frac{2 \pi y}{\lambda}+B_{1} \sinh \frac{2 \pi y}{\lambda}+C_{1} y \cosh \frac{2 \pi y}{\lambda}+D_{1} y \sinh \frac{2 \pi y}{\lambda}\right)(6-125)
$$

(similar expression for ψ_{2})

Solve by:

- Show that both $\psi_{1,2}$ are solns by substituting back into eqn,
- Determine $u_{1,2}$ and $v_{1,2}$ from derivatives of $\psi_{1,2}$

$$
u_{1,2}=-\frac{\partial \psi_{1,2}}{\partial y} ; v_{1,2}=\frac{\partial \psi_{1,2}}{\partial x}
$$

- Boundary conditions:
- $u=v=0$ at $y=-b_{1}$ and $b_{2} \rightarrow u(x, y)$ become $u_{1}\left(x,-b_{1}\right)=0 ; v_{1}\left(x,-b_{1}\right)=0$ $u_{2}\left(x, b_{2}\right)=0 ; v_{2}\left(x, b_{2}\right)=0$

6-21 The Rayleigh-Taylor instability of a dense fluid overlying a lighter fluid

In general, $b_{1} \neq b_{2}$
Displacement $w \ll b_{1}$ and b_{2}
-- approximation is very important-i.e., Interface shape is $\mathrm{w}=\mathrm{A} \cos 2 \pi \mathrm{x} / \lambda$

Because A is small, can treat interface as if it were at $y=0$ for the purposes of solving boundary conditions

- Boundary conditions:
- 1)Rigid at top and bottom ($-b_{1}$ and b_{2})-no slip condition (u continuous)
$\therefore u=v=0$ at $\mathrm{y}=-\mathrm{b}_{1}$ and b_{2}
- 2) Displacements and velocities and shear stress must be continuous across boundary between media (i.e., at interface, but since w is small, effectively $y=0$ here)

2) velocities and shear stress must be continuous across boundary between media (i.e., at $y=0$ here because w is small)

- $\mathrm{u}_{1}(\mathrm{x}, 0)=\mathrm{u}_{2}(\mathrm{x}, 0) ; \mathrm{v}_{1}(\mathrm{x}, 0)=\mathrm{V}_{2}(\mathrm{x}, 0)$

$$
\begin{aligned}
& \tau_{x y}=\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \text { is same at boundary }, \\
& \mu\left(\frac{\partial u_{1}(x, 0)}{\partial y}+\frac{\partial v_{1}(x, 0)}{\partial x}\right)=\mu\left(\frac{\partial u_{2}(x, 0)}{\partial y}+\frac{\partial v_{2}(x, 0)}{\partial x}\right)
\end{aligned}
$$

- (x dependence is purely a function of $\sin (2 \pi x / \lambda))$
- Another key-interface is moving with the same velocity as the fluid, so at $\mathrm{y}=0$

$$
\frac{\partial w}{\partial t}=v(x, 0)
$$

Finally, balance forces--buoyancy and fluid flow pressure

6-22 The buoyancy force associated with the displacement of the interface.

$\left(\rho_{1}-\rho_{2}\right) g w=\left(P_{2}-P_{1}\right)$ at $\mathrm{y}=0$
Flow pressure found from integrating 6-72
Buoyancy

$$
\frac{\partial P}{\partial x}=-\mu\left(\frac{\partial^{3} \psi}{\partial x^{2} \partial y}+\frac{\partial^{3} \psi}{\partial y^{3}}\right)
$$

Final solution after much algebra:

- Solution:

$$
w=w_{0} e^{t / \tau_{a}}
$$

- Where τ_{a} is the growth time of the disturbance
- Is a function of sinh, $\cosh (2 \pi \mathrm{~b} / \lambda)$ multiplied by

$$
\frac{4 \mu}{\left(\rho_{2}-\rho_{1}\right) g b}
$$

- τ_{a} depeñds on wavelength, but if have displacements at multiple wavelengths, fastest growing wavelength will dominate (τ_{a} is a minimum)

Dimensionless wavenumber

Stokes' Flow: How fast does a body fall due to its own weight?

- Applies in limit of very viscous fluid, with $\mathrm{Re}<1$ (reversible flow)
- Applications:
- Fall of pieces of slab
- Rise of plumes/magma
- Fall of metal probe

Ball rises through stationary fluid or fluid flows past stationary ball

Sphere Falling in a Fluid

Fluid viscosity η

Sphere Falling in a Fluid

$\mathrm{Fg}+\mathrm{F}_{\mathrm{B}}+\mathrm{F}_{\mathrm{D}}=0$

Fluid viscosity η
seismic
propagating crack embedded probe
mantle

Fall of Iron into Core

Stevenson, David J. Mission to Earth's Core -A Modest Proposal. Nature, 423, 239-240, 2003.

About 1 week to get to core

Balance gravity (Buoyancy) and Viscous drag forces

- Dominant equations: continuity equation and pressure equation again, same as before but now geometry and boundary conditions change

$$
\vec{\nabla} \cdot \vec{u}=0 \quad \vec{\nabla} P=\mu \nabla^{2} u
$$

- Where $P=p-\rho g y$
- $\rho_{\mathrm{f}}=$ density of fluid
- $\rho_{\mathrm{s}}=$ denisty of sphere

$$
\operatorname{Re}=\frac{\rho_{f} U(2 a)}{\mu}
$$

Boundary Conditions

- As $r \rightarrow \infty$
$u_{r} \rightarrow-U$ in z direction
$u_{r} \rightarrow-U \cos \theta u_{\theta} \rightarrow U \sin \theta$
No-slip on sphere: at $\mathrm{r}=\mathrm{a}$

$$
\mathrm{u}_{\mathrm{r}}=\mathrm{u}_{\theta}=0
$$

Continuity equation becomes:

$$
0=\vec{\nabla} \cdot \vec{u}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\left(\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}\right)
$$

But since $u_{\Phi}=0$, last term is 0
To solve equation, also need the Laplacian of u :

$$
\begin{aligned}
& \nabla^{2} \vec{u}=\vec{\nabla}(\vec{\nabla} \cdot \vec{u})-\vec{\nabla} \times(\vec{\nabla} \times \vec{u}) \\
& \vec{\nabla} \times \vec{u}=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(u_{\phi} \sin \theta\right)-\frac{\partial u_{\theta}}{\partial \phi}\right] \hat{r}+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial u_{r}}{\partial \phi}-\frac{\partial\left(r u_{\theta}\right)}{\partial r}\right] \hat{\theta}+\frac{1}{r}\left[\frac{\partial\left(r u_{\theta}\right)}{\partial r}-\frac{\partial u_{r}}{\partial \theta}\right] \hat{\phi}
\end{aligned}
$$

Pressure forces: Terms in P
Viscous forces: Terms in $\mu \nabla^{2} u$

Solution

- Surprisingly, most terms drop out and ...
- Pressure due to fluid flow is (Eq 6-216):

$$
p=\frac{3 \mu a U}{2 r^{2}} \cos \theta
$$

- Integrate to get downward "drag" (force) due to fluid pressure across sphere: $D_{p}=2 \pi \mu a U$

Viscous drag:

- Using 3-D formulation of stress again:

$$
\vec{\tau}=\mu\left(\vec{\nabla} \vec{u}+\vec{\nabla} \vec{u}^{T}\right)
$$

Integrate to get Viscous Drag $\mathrm{D}_{\mathrm{v}}=4 \pi \mu \mathrm{aU}$ So total Drag $F_{D}=$ Viscous Drag + Pressure Drag $=D_{p}+D_{v}=6 \pi \mu a U$

Speed of rise or fall:

- Balance Buoyancy Forces with Drag forces for steady-state case (no acceleration):
- $F_{B}=\left(\rho_{f^{-}} \rho_{s}\right) g 4 \pi a^{3} / 3=F_{D}=6 \pi \mu a U$
- Solve for U
- For faster flow, Re>1, more difficult: use dimensionless drag coefficient C_{D}

$$
\begin{aligned}
& C_{D}=\frac{\Gamma_{\mathrm{E}}}{\frac{1}{2} \rho_{f} U^{\prime} \pi a^{2}}=\frac{24}{\operatorname{Re}}(6-226) \\
& \text { Se to vel. }
\end{aligned}
$$

- Stokes flow:
 $U=\frac{2\left(\rho_{f}-\rho_{s}\right) g a^{2}}{9 \mu}(6-229)$

- $R e>1$:

$$
U=\left[\frac{8\left(\rho_{f}-\rho_{s}\right) g a}{3 C_{D} \rho_{f}}\right]^{1 / 2}(6-230)
$$

$$
C_{D} \equiv \frac{F_{D}}{\frac{1}{2} \rho_{f} U^{2} \pi a^{2}}=\frac{24}{\operatorname{Re}}(6-226)
$$

Note-units work out in both cases

