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Real symmetric Matrices 
 
To understand the importance of symmetry of a tensor we must make use of one of the most useful theorems in 
linear algebra.  We will deal with it in a general form. 
 
Definition: We extend the concept of orthogonal matrix already developed for 3 x 3 matrices: If A is a real square 
matrix (NxN) with the property that  
 

A A T = A T A = IN 
 
then we say A is an orthogonal matrix.  (The definition is also extendable to complex matrices.)  As before,  A T is 
the inverse of A. 
 
Theorem: If a matrix E is a real, symmetric (NxN) matrix, there exists an orthogonal matrix A (NxN) such that      
A T E A  =   , where   is a diagonal matrix, viz: 
 
  =  1 , 0, 0, …. 
    0,  2 , 0, 0, …. 

  0, 0,  3 , 0, 0, …. 
  
 
 
     ………0, 0, 0,  N 
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Outline of Proof 
 
The proof follows from a long chain of sub-theorems.  We outline them. 
 
We begin by looking at the Eigenvalues ( ) and Eigenvectors (  ) of E.  Recall that these are defined by the 
equation: 
 
 E   =            (1) 
 
The condition that there should exist non-trivial eigenvalues and eigenvectors for E is found as follows.  Write  
eqn 1: 

E    -  I     = ( E  -   I )    =  0     
 
Treat ( E  -   I ) as a vector of columns, and multiply this out: 
 
 N 
      i  .{ column i of ( E  -   I )} =  0  
  i = 1 
 
That is, the column rank of ( E  -   I )  is less than N; i.e. ( E  -   I )  is singular.  Therefore its determinant must be 
zero. 
 

| ( E  -   I ) |  =  0      (2) 
 
Now expanding this determinant gives a polynomial of order N in .  The fundamental theorem of algebra says that 
this equation has N (possibly complex) roots, not all of which need be distinct. 
 
We can write this polynomial: (  -  1)(  -  2)(  -  3)….(  -  N)  =  0 
 
[NB 'not distinct' means that some of the  i may be repeated.] 
 
Now for each  i we can solve for  i : 
 

E   i =  i  i       (1a) 
 
Note that if  i satisfies eqn 1a, then so does k  i .  Therefore, to uniquely define the eigenvectors,  we adopt the 
convention that they are of unit length. 
 
(i)  If E is real and symmetric, the  i are all real. 
 
From eqn 1a, 
 
  i 

H E   i =  i  i 
H  i   =  i , because   i is unit length. 

 
(where the H denotes the Hermitian - i.e. complex conjugate transpose - of the eigenvector). 
 
Take the Hermitian of the equation: 
 
  i 

H E H  i =  i  
 
where   means complex conjugate. 
 
But E is real and symmetric, so E H = E, so   
 
  i 

H E H  i =   i 
H E   i 

 
which means  i   =   i ; i.e.  i  is real. 
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(ii) If E is real and symmetric, then there is a real eigenvector for every eigenvalue. 
 
From ( E  -   I )    =  0 , since ( E  -   I ) is real, it follows that the real part of  ,  R , must satisfy ( E  -   I )  R   
=  0. I.e.  R is a real eigenvector.  Since everything is now real, we can now revert to T for transpose. 
 
(iii) If E is real and symmetric, the eigenvectors are mutually orthogonal. 
 
First, consider real eigenvectors  i and  j associated with distinct eigenvalues  i and  j .   
From eqn 1a, 
  j 

T E   i =  i  j 
T  i   

and 
  i 

T E   j =  j  i 
T  j   

 
Take the transpose of the second equation, remembering that the eigenvalues and eigenvectors are real: 
 
  j 

T E T  i =  j  j 
T  i   

 
But E is real and symmetric, so E T = E. Taking differences: 
 
  j 

T E T  I  -   j 
T E   i =  0  =  j  j 

T  i   -   i  j 
T  i   = (  j -   i  )  j 

T  i    
 
But (  j -   i  )  0 because they are distinct eigenvalues.  Therefore   i 

T  j = 0, i.e. the eigenvectors are 
orthogonal. 
 
Second, consider the case where some of the eigenvalues are repeated.  For each repeated eigenvalue it can be 
shown that there is a subspace of R N of dimension equal to the number of times the eigenvalue is repeated, in 
which every vector is an eigenvector corresponding to that repeated eigenvalue.  So e.g. if an eigenvalue is repeated 
3 times, there is a space R 3 in which every vector is an eigenvector for that eigenvalue.  The subspace is orthogonal 
to the subspaces corresponding to the other eigenvalues - because we have proved that distinct eigenvalues have 
orthogonal eigenvectors.  In the subspaces, we can find as many orthogonal vectors as the dimension of the 
subspace.  Therefore we can find a set of N  mutually orthogonal, real  eigenvectors for every set of N eigenvalues, 
but they will not be unique if there are repeated roots to | ( E  -   I ) |  =  0.  
 
Now write  A = ( 1 ,  2 ,  ….N)  

   
i.e. construct a matrix by using the eigenvectors of E as columns.  A is orthogonal by the previous result.   
 
Now consider: 
 
 A T E A  = ( 1 , 2 , ….N ) T E ( 1 , 2 , ….N )  

 

 = ( 1 , 2 , ….N ) T ( 1 1 ,  2 2 , …. N N ) 
 
  =  1 , 0, 0, …. 
    0,  2 , 0, 0, …. 

 
 
 
     ………0, 0, 0,  N 

 
   
  =  as required.  QED. 
 
 
This means that for real symmetric tensors, like the stress tensor , we can find a set of axes, ( 1 ,  2 ,  3) in which 
the tensor is diagonal.  These axes are called Principal Axes, and the diagonal entries (eigenvalues) are Principal 
Components.  
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Eulerian and Lagrangian Coordinates 
 
Consider a cuboid of material within a continuum, centred at P0 ( a1

0, a2
0, a3

0) at t = 0. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
After time t = T the continuum has deformed (ie moved, flowed, stretched, rotated) and now the matchbox is 
centred at ( X1, X2, X3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can take two views of this.   
 
(1)  We can stand at the origin and watch the matchbox move and deform, describing the motion in terms of the 
(fixed) coordinate system ( x1, x2, x3) and t.  This is called the Eulerian, or spatial, system of coordinates. 
 
Or (2)  We could stand at P0 and follow the movement of ‘our’ matchbox, whose motion we would regard as a 
function of the initial position ( a1

0, a2
0, a3

0), t = 0.  So we would write Xi = Xi ( a1
0, a2

0, a3
0, t ), i = 1, 2, 3; ai

0 = Xi ( 
a1

0, a2
0, a3

0, 0 ) being the initial condition. 
 
This system of coordinates, depending on the position within the material, is called the Lagrangian, or material, 
system.  Both have their uses. 
 
We are interested not in the bodily movement of the matchbox, but rather with how it deforms with time.  So we 
will ride on the matchbox to observe its changing shape. 
 

x3 

x2 

x1 

P0 (x1 = a1
0, x2 = a2

0, x3 = a3
0)  t = 0 

 

x3 

x2 

x1 

P0 ( X1, X2, X3)  t = T 
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The deformation of a continuum 
 
So consider a point P near P0  (within the matchbox).   
 
 
 
 
 
 
 
 
 
 
 
 
In time t, P0   Q ,  displacement ui

0 , and P  R, displacement ui.         
 
We shall consider that ui

0 , ui are functions of their starting points P0, P, and t; i.e. we will use Lagrangian 
coordinates.   
 
Now this is a continuum, so we can assume that all movements, etc are smooth.  So expand  
ui ( a1, a2, a3) as a Taylor Series, viz: 
 
 ui ( a1, a2, a3)    = ui

0 ( a1
0, a2

0, a3
0)   

+  ui ( a1, a2, a3) /   a1 . (a1 – a1
0 ) 

+  ui ( a1, a2, a3) /   a2 . (a2 – a2
0 ) 

+  ui ( a1, a2, a3) /   a3 . (a3 – a3
0 ) 

+ terms of order (aj – aj
0 ) 2 

 
[like ½ 2 ui ( a1, a2, a3) / a1 a2. (a1 – a1

0 ) (a2 – a2
0 ), etc] 

 
for i = 1, 2, 3. 

 
We assume that (aj – aj

0 ) is small, j = 1, 2, 3; so neglect the higher order terms. 
 
Write  aj  =  (aj – aj

0 ) = coordinates of P relative to P0   (for j = 1, 2, 3). 
 
Then to the first order in  aj ,  
            3 

ui ( a1, a2, a3)  -  ui
0 ( a1

0, a2
0, a3

0)   =       (  ui /  aj  )  aj    (3)    
            j = 1  
By the summation convention, in place of eq 3 we would write: 
 

ui ( a1, a2, a3)  -  ui
0 ( a1

0, a2
0, a3

0)   =   (  ui /  aj  )  aj    (3a) 
 
Now ui ( a1, a2, a3)  -  ui

0 ( a1
0, a2

0, a3
0) is the displacement of P relative to P0; i.e., relative to  P0 we see P move by  

 
  ui   =  (ui – ui

0 ) 
 
So eq 1a now becomes: 
 

 ui   =  (  ui /  aj  )   aj        (3b) 
 
Note that this is a 'proper' index set equation. Moreover ui  is a vector, so by our earlier result ( ui /  aj ) is a 
tensor; and  ui  and  aj  are vectors.  So all quantities of eqn (3b) are tensors. 
 

t = 0 
                        P0(ai

0) 

P(ai) 

t = t 
           Q(ai

0 + ui
0) 

R(ai + ui) 
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E and W  
 
Now we apply the very useful trick of adding and subtracting a convenient amount to  
(  ui /  aj  ): add and subtract ½ (  uj /  ai  ) - 
 

 ui   =  (  ui /  aj  + ½  uj /  ai   - ½   uj /  ai  )   aj      
 
divide (  ui /  aj  ) in half and rearrange: 
  
  =  ( ½  ui /  aj  + ½  uj /  ai   + ½  ui /  aj - ½   uj /  ai  )   aj  
so: 
 
  ui   =  ( ½  ui /  aj  + ½  uj /  ai  )  aj + ( ½  ui /  aj - ½   uj /  ai  )   aj   (4) 
 
Now we define the first term in parentheses to be the i,j th element of a tensor E; and define the second term to be 
the i,j th element of a tensor W (they are tensors because they are sums of derivatives of vectors).  So we can write 
eq 4 as a tensor equation (still using the summation convention): 
 
  ui   =  E i j  aj + W i j  aj         (4a) 
 
(which applies to each component of  ui , i = 1, 2, 3.) 
 
If we arrange the components of  ui in a column vector   u =  ( u1,   u2,  u3 ) 

T   
then we can write eqn 4a as an equivalent matrix equation: 
 
  u   =  E   a + W   a         (4b) 
 
To recap: enq 4a (or 4b) represents the (small) displacement, relative to P0 , of points near to P0, to the first order in 
 aj . 
 
The meaning of W 
 
First note that E and W are respectively symmetric (E i j  = E j i) and antisymmetric (W i j  = - W j i), by construction.  
This means, for W, that since the diagonal terms W i i  = - W i i  (no summation) for each i, then  
W i i = 0, ie  
 

W  =  0 W 1 2 -W 3 1 

-W 1 2 0 W 2 3 
W 3 1 -W 2 3 0 

 
Ie W has only three independent components (there is a reason for writing it this way with these signs!) 
 
So define   
 

 = - (W 2 3 , W 3 1 , W 1 2 )
T  

 
(Note the order! 1st component is W2 3 , rest follow cyclically.) 
 
 is called the associated vector of W.  Now consider  
 

W  a = 0 W 1 2 -W 3 1  a 1  

-W 1 2 0 W 2,3  a 2  
W 3 1 -W 2 3 0  a 3  
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 =   W 1 2 .  a 2  -     W 3 1 .  a 3  

-W 1 2 .  a 1   +      W 2 3 .  a 3  
  W 3 1 .  a 1   -       W 2 3 .  a 2  

 
Which looks like a cross product; indeed – 
 

W  a = det   x 1   x 2
 
   x 3

 
   

-W 2 3 -W 3 1 -W 1 2  
   a 1    a 2    a 3  

 
  =     X   a 
 
(NB by x i

  we mean the unit vector in the direction of the x i  axis.) 
 
So the W effect of the deformation on  a is the same as that produced by a cross product with the associated 
vector. 
 
We can interpret   X   a easily.  Recall that a cross product is a vector perpendicular to both  and   a, and it is 
small by assumption.  So   X   a represents a component of  u (the displacement of the vector  a ) at right 
angles to  a and  : 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the figure,   X   a represents a rotation of the end of   a about the vector  ; at least, in the limit as            
t   0 , or   u   0. 
 
So we can interpret W  a (which is the same as   X   a) as a (rigid) rotation of the continuum, relative to the 
reference point P0 as origin, about an axis  at P0.  The amount of rotation is 
 

 =   |   X   a |/ ( sin  |  a | )  =  |  | (true for  small). 
 
where  is the angle between  and  a . In practical problems, we may or may not have information about the 
rotation.  Eg, if we are interested in the deformation of the Earth’s surface, we cannot by conventional terrestrial 
surveying estimate how much rotation has occurred, unless we have measurements of some quantity relative to an 
external frame of reference – such as astronomical observations, Global Positioning System, or palaeomagnetic 
observations that show the rotation relative to the Earth’s magnetic pole. 
 
More about rotations 
 
First, we can use the alternating tensor to write the cross product, so: 
 
   X   a  =    i  j k  j  a k 
 
Since we can rotate our coordinate system to any orientation we please without ‘upsetting’ our physical quantities, 
rotate it so that  becomes the x 3 axis.  Now a rotation of the body about the x 3 axis by  is described by the 
orthogonal matrix R 

 

 a 

  X   a 

 

P0 
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 R = cos  -sin  0 
   sin  cos  0 
   0 0 1 
 
Note carefully: rotation of the body through  is equivalent to rotating the axes through - . 
If  is small, then sin  ~ , and cos  ~ 1 (to the first order in  ). So: 
 
 R ~ 1 - 0 (to the first order in  ) 
    1 0 
   0 0 1 
 
ie a position  a in the body is rotated to   a  given by: 
 
  a i = R i  j  a j =  a 1 -    a 2   (5) 
       a 2 +   a 1 
       a 3  
 
From the previous result: 
 
  a i =  a i +     i  j  k (x 3)j  a k 
  
x 3 = (0, 0, 1) T , so this gives: 
 
  a i =  a i +     i  3 k  a k 

 

  =  i  k   a k +   3 k i  a k   (cyclic permutation of indices of   i  j  k ) 
 

  = (  i  k +   3 k i )  a k    
  
which, by inspection, corresponds to eqn 5.  We shall want this formulation of rotation in a moment. 
 
The strain tensor E 
 
What kinds of displacement can a continuum undergo?  There are only three: Displacement of the origin - which 
we have eliminated by moving with P0 – Rotation, represented by W, and Distortion – ie change  of shape and/or 
volume. 
 
Therefore, since E + W described the whole (Lagrangian) displacement, the Distortion must be described by E. 
 
[NB: we could prove that no part of E could contribute to a further rotation, by showing that rotations are only 
represented by antisymmetric matrices – an exercise for the reader!] 
 
We will call E the strain of the continuum.  We have already shown that it is a tensor.  Remember that E is 
symmetric. 
 
Strain tensor E in a new coordinate system 
 
Since E is real and symmetric, by the theorem for real symmetric matrices there exists an orthogonal (3 x 3) 
transformation A which gives  
 

A T E A  =          (6) 
 
where   is a diagonal, 3 x 3  matrix whose entries are the eigenvalues of E.  By the theorem, E completely 
determines A.  We know from our discussion of transformations in Part 1 that the columns of A = (1 ,   2 ,  3 ) 
can be interpreted as a new set of axes. 
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The tensor transformation corresponding to eqn 6 is written: 
 
  i  j = E ' i  j =  a i  p a j  q E p  q     (6a) 
 
where a i  p = A p  i .   
So an equivalent statement of the theorem, as it applies to any real symmetric second rank tensor E, is that we can 
find a coordinate system, from the eigenvectors of E, in which the tensor is a diagonal tensor.  This is clearly a 
convenient form to work with (three quantities to deal with instead of 6).  Moreover, by the Fundamental Principle 
the properties of the tensor are unaltered by the coordinate system.  Therefore we are perfectly at liberty to choose 
to operate in this convenient coordinate system. 
 
We can thus use the (1 ,   2 ,  3 ) coordinate system to describe the deformation of the continuum.  Make the 
transformations to the new system: 
 
 a  A T a  =   a ',  
   

u  A T u  =   u '. 
 
so that the strain part of the displacement equation: 
 
 u = E  a 
 
becomes: 
 
 A T u = A T E  a 
 

 = A T E  ( A A T )  a    (because A A T = I)  
 
 = (A T E A )(A T a) 

 
ie u ' =   a ' 
 
ie u ' = 1 , 0,  0     a ' 
    0,  2 , 0   

0,  0,   3  
    

is the equation that describes the strain deformation of the continuum in this coordinate system.  As noted before, 
we have the simplified circumstances that  is a diagonal matrix. 
 
The axes (1 ,   2 ,  3 ) are called the Principal Axes of the deformation and the diagonal elements 1 , 2 ,  and 3 
are called the Principal Strains. 
 
Deformation of a unit sphere 
 
It is easy to analyse the effect of Strain using the Principal Axes system, where (dropping the primes ') 
 
 u  =   a          (7) 
 
  = 1 , 0,  0          (7a) 
    0,  2 , 0   

0,  0,   3  
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So now consider an imaginary sphere (like our imaginary matchbox), of radius 1, embedded in the continuum at     
t = 0. 
 
 
 
 
 
 
 
Any point on the sphere, at  a , satisfies a1

2  + a2
2  + a3

2  =  1 at t = 0.  After deformation (t = T), the point at 
a has been moved to a'  = a  +  u . 
 
 u is given by eq 1: 
 
 u  =   a           
 
  = 1  a1 
   2  a2 

   3  a3 
 
So a'   =  a   +   u . 
 
  = (1  +  1  ) a1 
   (1  +  2  ) a2 

   (1  +  3  ) a3 
 
So  a1

2  + a2
2  + a3

2    
 

=   [ a1' / (1  +  1  )] 
2  + [ a2' / (1  +  2  )] 

2  + [ a3' / (1  +  3  )] 
2   =  1 

 
which is the equation of an ellipsoid, whose Principal Axes align with the Principal Axes of Strain, and whose 
semi-axes are: 
 
  (1  +  1  ) ,   (1  +  2  ) ,   (1  +  3  )    
 
Suppressing one dimension (and exaggerating the strain, which is small): 
 
 
 
 
 
 
 
 
 
 
 
 
 
Several results follow: 
 
(i) If 2  , 3   =  0, 1    0, then the only deformation is in the x1 direction, where a  
length L is deformed to a length (1  +  1  ) L, so the fractional change in length (ie the 1-D strain) is: 
 
 [(1  +  1  ) L  -  L  ] / L = 1   
 
That is, 1  is the strain according to the usual 1-D definition of strain. 
 

| a | = 1 

1 

(1  +  2  ) 

(1  +  1  ) 

Po 
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Notice that an extension is positive and a contraction negative. 
 
(ii) The fractional change in volume – or the volumetric strain, called the Dilatation - 
 

=  (volume of ellipsoid – volume of sphere)/(volume of sphere) 
 
= ( 4/3  (1  +  1  ) (1  +  2  ) (1  +  3  )  -  4/3  13 )/ (4/3  13) 
 
= (1  +  1  ) (1  +  2  ) (1  +  3  )  -  1 

 
If (as we usually assume) the strains are small compared to 1, then we can ignore terms like 1 2  in the expansion 
of (1  +  1  ) (1  +  2  ) (1  +  3  ).  So the Dilatation is approximately: 
 

 = (1  +  1    +  2    +  3  )  -  1 
 
 =  1    +  2    +  3 

 
which is the Trace of  .  
 
Invariants of E 
 
We need to go back a bit and consider more of the consequences of the equation 6: 
 
 A T E A   =     
 
The columns i of A are the eigenvectors of E corresponding to eigenvalues i .  So we can find the eigenvalues of 
E, i.e. the Principal Strains, by solving the Characteristic Equation: 
  
 |  E  -   I  |  =  0   
 
That is (remembering that E is symmetric!): 
 
 E11 -   E12  E13  = 0 
 
 E12  E22 -   E23 
 
 E13  E23  E33 -  
 
ie   (E11 -  ) [ (E22 - ) (E33 - ) - E23 

2]  
+ E12 [E13 E23  - E12 (E33 - )]   
+ E13 [E12 E23 - E13 (E22 -  )]    =  0 

 
ie   - 3    

+ 2 [E11 + E22 + E33 ]   
+  [E12

2
     +  E13

2  +  E23
2
  -  E11 E33  -  E11  E22    -  E11

 E33]   
+ [E11E22E33  +  E12  E13  E23  + E13  E12  E23 - E23

2 E11 -  E12
2 E33  -  E13

2  E22 ]  = 0 (8) 
 
which is of course a cubic, which will in general have three complex roots.  As we have seen, E being symmetric 
guarantees that the roots are real.  Note that the coefficient of 2  is Trace (E) and that the coefficient of 0 (=1) is   
| E |. 
 
Now since eq 8 has three real roots (call them 1  , 2  , 3 ), we can write eq 8 equivalently as: 
 

  - (  -  1  ) (  -  2  ) (  -  3  )  =  0 
  
which is identically equal to eq 8.   
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Compare the multipliers of 2 : 
 

 1    +  2    +  3  =  E11 + E22 + E33 
 
This must be true for any coordinate system ie the Trace of E is invariant to changes of coordinates, and is indeed 
called an invariant of E.  The multipliers of 1 and 0 are similarly invariants of E. 
 
However, our particular interest is in Trace (E) which we have just proved to be equal to the dilatation in every 
coordinate system. 
 
Deviatoric Strain 
 
Put  (for dilatation)  =  1    +  2    +  3  =  E11 + E22 + E33 

 
And subtract /3 I from E to make E * : 
 
 E = (E  -  /3 I)   +  /3 I 
 
  =  E *  +  /3 I 
 
E *  is called the Deviatoric Strain.  Note that Trace (E *) = Trace (E) – 3 x /3 = 0; ie the dilatation of E * is 0.  So 
E * describes the deformation of the continuum without volume change. 
 
Now: A T E A   =     = A T (E *  + /3 I ) A   
     = A T E *A  + A T /3 I  A   
     = A T E *A  + /3  A T A   
     = A T E *A  + /3  I   
 
So:  A T E *A   =   - /3  I    
 
   = 1 –/3  0  0      
     0    2 – /3  0   

0    0     3 – /3 
 
 
which is diagonal.  So E and E * have the same Principal Axes. 
 
General equation for the Principal Axes in Plane strain 
 
We shall now consider the components of E in a plane.  If there is no deformation in the 3rd direction, this is called 
Plane Strain.  It has engineering applications e.g. in assessing the deformation of sheets of materials, and in the 
deformation of the Earth. 
 
We assume that there is no deformation in the a3 direction, nor dependence of strain in any other direction on the a3  
direction.  So: 
 
 E = E11 E12 0 
   E12 E22 0 
   0 0 0 
 
And we solve: 
 
 E  =  , ie 
 
 E11 E12 0 1 =  1   (9) 
 E12 E22 0 2   2  
 0 0 0 3   3  
 



 13

The last row gives 0 =  3 .  Therefore 3 = 0, since   0 .  So the Principal Axes with non-trivial   0 lie in the 
a1 , a2 plane.  The third one is perpendicular to them, and must therefore be a3.  So in the case of Plane Strain we 
can suppress the 3rd row and column of E . 
 
Then the first two rows of  eq 4 give: 
 

E11 1 + E12 2  =  1    (10a)  
E12 1 + E22 2  =  2    (10b) 

 
Dividing (10a) by 1 and (10b) by 2 and equating: 
 

E11  + E12 2  /1 =    = E22  + E12 1  /2  (11) 
 

Now 2  /1 = tan  ; 
 
 
 
 
 
 
 
 
 
 
which is the tangent of the angle between the Principal Axis and the a1 axis, which is what we want.  Substitute     
2  /1 = tan    in eq 11: 
 

E11  + E12 tan  = E22  + E12 / tan   (11a) 
 
So: tan  (E11  - E22)  = E12  (1 - tan 2   )   
 
Therefore: 
 
 2 tan  / (1 - tan 2   )  =  2 E12 / (E11  - E22 )  
 
Now the LHS is tan 2  . 
 
So:   =  ½ tan -1 { 2 E12 / (E11  - E22 ) }    (12) 
 
is the angle that (one of) the Principal Axes makes with the a1 axis.  This useful result is worth remembering.  Note 
that tan 2 (  +  /2 ) = tan ( 2   +  )  =  tan 2   =  2 E12 / (E11  - E22 )  
 
ie    +  /2  is also a solution of eq 12 which, of course, gives the angle of second Principal Axis at /2 to the first 
Principal Axis. 
 
Isotropic Tensors 
 
A material is isotropic if its physical properties are the same in any direction.  For example, if we measure the 
extension of a steel plate in response to a force of the same magnitude applied in different directions, we would 
expect the strain to be the same in each case.  We would expect the steel to be isotropic. Glass is isotropic, wood is 
not.   
 
Isotropy is an important property of materials and fields described by tensors, so we are going to spend a little time 
characterising isotropic tensors. 
 
Precisely, we say that a tensor is isotropic if its components are unaltered in value by (rotational) orthogonal 
transformations.  Like the properties of a steel plate, if we determine the tensor in different orientations, we get the 
same components. 

a2 
 

 

a1 
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Isotropic tensors of zero rank. 
 
These are scalars, which are the same in every coordinate system.  So every tensor of zero rank is isotropic. 
 
Isotropic tensors of rank 1. 
 
Let vector v be isotropic.  Since it is a tensor, then 
 
 v 'i =   a i  j v j      (1) 
 
for any orthogonal rotation a i  j .   
 
Since it is isotropic, we require 
 
 v 'i = v i 
 
for any orthogonal transformation.   
 
Therefore consider a 180 degree rotation about the x 1 axis: 
 
 a180 i  j = 1 0 0 
   0 -1 0 
   0 0 -1 
 
From eqn 1, 
 v '2 = -  v 2 

v '3 = -  v 3 
 
Hence v 2  = v 3 = 0.  Similarly for v 1.  Hence there are no (non-trivial) isotropic vectors of rank 1. 
 
Isotropic tensors of rank 2. 
 
The Kroneker (identity) tensor is isotropic.  Proof – 
 
  ' i  j =  a i  p a j  q  p  q      
 
  =  a i  p a j  p  
 
  =   i  j    because a i  j is orthogonal. 
 
It can be shown that every second order tensor of rank 2 is of the form k  i  j , where k is a scalar. 
 
Outline of proof 
 
Let b i  j be a general isotropic tensor of rank 2. 
 
(i) b i  j is diagonal.  Rotate b i  j by 180 degrees about the x 1 axis: 
 
 b 'i  j = a180 i  p  a180 j  q b p  q   
 
so b '1  2 = a180 1  1 a

180 2  2 b 1  2 + zero terms     
 

= -  b 1  2  
 
Since b 'i  j is isotropic, b 1  2 must be zero; similarly for other off-diagonal terms. 
 
(ii)  Now consider a small rotation  of the axes about the x 3 axis.  Recall our development of an expression for the 
rotation of a body if  is small:  
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 R ~ 1  0 (to the first order in  ) 
   - 1 0 
   0 0 1 
 
This is a rotation of the body through -, or the axes through .  The transformation in tensor notation is  
 
 R

i  k = (  i  k -   3 k i )  = (  i  k +   3 i  k)  
 
 
 
 
And we have 
 
 b 'i  j = R i  p R

j  q b p  q   
 
  = (  i  p +   3 i  p) (  j  q +   3 j  q) b p  q  
 
  =  i  p  j  q b p  q +   3 i  p  j  q b p  q +   i  p   3 j  q b p  q +  2  3 i  p   3 j  q b p  q 
 
  = b i  j +  ( 3 i  p b p  j +   3 j  q b i  q )  (neglecting   2) 
 
  = b i  j  since it is isotropic. 
 
Therefore: 
 ( 3 i  p b p  j +   3 j  q b i  q )  =  0 
 
Take i = 1, j = 2: 
 
 ( 3 1  p b p  2 +   3 2  q b 1  q )  =  0 
 
which has non-zero terms only for p = 2 and q = 1; hence 
 
 ( 3 1  2 b 2  2 +   3 2  1 b 1  1 )  =  0 
 
or 
 + b 2  2 - b 1  1   =  0 
or 
    b 2  2 = b 1  1    
 
Similarly for b 3 3 .  I.e. the diagonal terms are that same and we can write: 
 
 b i  j  = k  i  j  
 
as required. 
 
Isotropic tensors of rank 3 
 
The alternating tensor  i j  k is isotropic.  All other isotropic tensors of rank 3 are multiples of it.  The proof is 
similar to that for isotropic tensors of rank 2 (see Fung ‘A first course in continuum mechanics’, p140). 
 
Isotropic tensors of rank 4 
 
These will be important to us, because of their implications for the relationship between stress and strain - Hooke's 
Law - in an isotropic medium. 
 
Since  i  j is isotropic, it is easily shown, using the same procedure as for  i  j , that   
 i  j  k  m ,    i  k  j  m +  i  m  j   k  and  i  k  j  m -  i  m   j   k  =    s  i   j  s  k  m are also isotropic. 
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Furthermore, a general isotropic tensor of rank 4, say u i  j  k  m ,  can be written in the form: 
 
 u i  j  k  m =   i  j  k  m +  (  i  k  j  m +  i  m  j   k ) +   (  i  k  j  m -  i  m   j   k  ) 
 
Furthermore, if u i  j  k  m  has symmetry properties: u i  j  k  m  = u j  i  k  m  and u i  j  k  m  = u i  j  m  k , 
Then 
 u i  j  k  m =   i  j  k  m +  (  i  k  j  m +  i  m  j   k )  
 
is the general form of an isotropic, symmetric tensor of rank 4, where   and   are arbitrary constants. 
 
(We will not prove this.  The argument follows along the lines of the proof for tensors of rank 2 – see Fung ‘A first 
course in continuum mechanics’, p141.) 
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Bringing together Stress and Strain - Hooke’s Law 
 
We are now able to properly consider Hooke’s law in its most general form, which can be stated as:  “Stress (as a 
tensor) is linearly related to strain (as a tensor)”.  That is - 
 
 S i j  =  C i j k l  E k l  (summation over k, l) 
 
where the 3 4  = 81 coefficients C i  j k l are independent of E and S, but may depend on location in the medium (so 
they may not be “constants”). 
 
A material obeying Hooke’s Law is called elastic.  Hooke’s Law applies quite well to real materials when the 
strains are small. 
 
C i j k l is a 4th order tensor i.e. it transforms according to: 
 
 C i j k l ′ =  a i p a j q a k r a l s   C p q r s 
 
We will not prove this, but it follows from the definition of C i j k l and that E and S are both tensors. 
 
Reducing the number of coefficients C i j k l 
 
(i)  Symmetry of S i j  and  E k l 
 
Since S i j  is symmetric, S i j  = S j i , 
 
then: C i j k l  E k l  =  C j i k l  E k l        
 
and since E k l is symmetric, 
 
then: C i j k l  E k l  =  C i j k l  E l k  =  (renaming) C i j l k  E k l     
 
so there are only really 6 independent ‘ i, j ‘ parts of C and only 6 independent  ‘k , l ‘ parts.  So we have reduced 
the number of coefficients C i j k l  to 6 x 6  =  36.  This is a completely general result, resulting from the symmetry 
of stress and strain. 
 
 (ii)  In an Isotropic medium, the Principal Axes of E and S coincide.  This is important: it means that we can infer 
the Principal Axes of Stress from measurements of the strain tensor, which are often much easier to make. 
 
Proof: Choose the axes to be the Principal Strain Axes, so that E k l is diagonal  
(E  k l = 0, k  l). 
 
Then: S i j  =  C i j k l  E k l  =  C i j 1 1  E 1 1  +  C i j 2 2  E 2 2  +  C i j 3 3  E 3 3 
 
(other terms in the summation are zero). 
 
Now rotate the axes through 180 degrees about the x 3  axis.  This is achieved with the transformation: 
 
 
 a180 i  j = -1 0 0 
   0 -1 0 
   0 0 1 
 
ie a  i p = + 1 for i = p, a  i p = 0 otherwise. 
 
We now invoke the assumption of isotropy and require that C i j k l is unchanged by this rotation ie the relationship 
between components of stress and strain is the same whether we take the + x or – x direction, etc.  So: 
 
C i j k l   =  C i j k l 
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So in the rotated coordinate system: 
 
 S i j =  C i j k l   E k l    =  C i j k l  E k l   
 
and: 
 E k l    = -1 0 0 E 1 l  0 0 -1 0 0 
   0 -1 0 0 E 2 2 0 0 -1 0 
   0 0 1 0 0 E 3 3 0 0 1 
  
 
  = E 1 l  0 0  
   0 E 2 2 0  
   0 0 E 3 3  
 
  =  E k l     
So: 
 S i j = C i j k l  E k l  = S i j ,  
 
ie S i j is unchanged by the rotation. 
 
But: 
 S i j   =  -1 0 0 S 1 l  S 1 2 S 1 3 -1 0 0 
   0 -1 0 S 2 l S 2 2 S 2 3 0 -1 0 
   0 0 1 S 3 l S 3 2 S 3 3 0 0 1 
  
 
  = S 1 l  S 1 2 -S 1 3  
   S 2 l S 2 2 -S 2 3  
   -S 3 l -S 3 2  S 3 3  
 
So: -S 3 l = S 3 l     S 3 l = 0, and  -S 3 2 = S 3 2     S 3 2 = 0, 
 
And rotation through 180 degrees about another axis would give S 1 2 = 0 as well.  So we have that S i j is diagonal 
ie it is in its Principal Axis form, like E. QED. 
 
(iii)  Form of C i j k l and Hooke’s law for an Isotropic medium 
 
For an isotropic medium, and because of the symmetry of S and E, we have that C i j k m can be written with 
complete generality as: 
 
 C i  j  k  m =   i  j  k  m +  (  i  k  j  m +  i  m  j   k )  
 
Thus 
 S i j   =  {  i  j  k  m +  (  i  k  j  m +  i  m  j   k ) }  E k m 
 
  =    i  j  k  m E k m +  (  i  k  j  m E k m +  i  m  j   k E k m ) 
 
Since  i  j is the identity, 
 
 S i j   =    i  j E k k +  ( E i j  + E i  j ) 
 
i.e. 
 
 S i j   =    i  j E k k + 2  E i j      (2) 
 
where E k k  is the dilatation = E 1 1 + E 2 2  + E 3 3 
 



 19

This then is the general form of Hooke’s law for isotropic materials.  It has just two parameters – the Lamé 
constants  and  (remember – they could depend on position within the material). 
 
The ratio of any stress component to a corresponding strain component is called an elastic modulus.   
 
e.g. S 1 2 =  2  E 1 2    ( 1 2 = 0) 
  
so: S 1 2 / E 1 2    =  2  ;    is called the Shear Modulus. 
 
NB the ‘2’ arises historically from the definition of E i j , which has the ½ ; viz: 
 
 E i j  = ½ (  u i / x j +  u j / x i ) 
 
So: S i j =   (  u i / x j +  u j / x i ) +    u k / x k  i j   
 
e.g. 2  
 S i i   =    i  i E k k + 2  E i i   
 
  =  (re-labeling E i i)   3  E k k + 2  E k k 
 
  =  (3   + 2  ) E k k 
 
S i i  is the sum of the diagonal elements of S, and is analogous to the dilatation.  The pressure p is defined to be – 
 
 p  =  - 1/3 S i i  ( = - mean normal stress) 
 
(Remember tensions are positive, compressions negative). 
 
So the ratio:  -p/E k k is that ratio of (-)pressure to volumetric change = (   + 2/3 ).  This is called the Bulk 
Modulus,  often denoted by  . 
 
e.g. 3 Uniaxial extension occurs when S 1 1  0 and S i  j = 0 for i, j    1, 1.  
 
The ratio S 1 1  /E 1 1   in uniaxial extension is called Young’s Modulus (see assignment). 
 
Newtonian Fluid 
 
A Newtonian fluid is a viscous fluid in which the shear stress is linearly proportional to the rate of deformation.  It 
is a useful model for many applications, for stiff fluids e.g. the Earth’s mantle. 
 
First, in place of the strain tensor E i j we define a rate of strain tensor V i j where we have replaced displacements u i 
in the definition of E i j by velocities v i: 
 
 V i j  =  ½ ( v i / x j +  v j / x i) 
 
(think of the displacements in the derivation of E i j occurring in unit time). 
 
Then the full constitutive relationship between stress and rate of strain for a Newtonian Fluid is: 
 
 S i j   =  - p  i  j   +  D i j k l  V k l   
 
Where p is, again, the pressure, and we have a set of constants D i j k l in place of C i j k l in Hooke’s law.  For an 
isotropic fluid, this reduces (similarly to an isotropic elastic solid), to: 
 
 S i j   =  - p  i  j   +   i  j V k k + 2  V i j   
 
Contracting this gives: 
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 S i i   =  - p  i  i   +   i  j V k k + 2  V i i   
 
  =  -  3 p   + (3  + 2  )V k k   
 
So the identification of p = - 1/3 S i i is equivalent to requiring  
 

(3  + 2  ) = 0 or  = - 2/3  
 
which implies that the rate of dilatation is not affected by the pressure. 
 
So we have: 
  

 S i j   =  - p  i  j   + 2  V i j  - 2/3   i  j V k k    (3) 
 
A fluid obeying eqn(3) is called a Stokes fluid after the 19th applied mathematician George Stokes.  is called the 
viscosity.  If in eqn(2)  = 0, we have a non-viscous fluid, with constitutive equation: 

 S i j   =  - p  i  j      (4) 
 

An Introduction to Tensor Calculus 
 
We have already met the derivatives of tensors, and shown that the new entity that results from differentiating a 
tensor X i j term by term; e.g. 
 
  X i j / x k  
 
is a tensor (in this case of rank 3).  And we have identified the derivatives from vector calculus  - 
 
Gradient of a scalar  – tensor of rank 1: grad  =    / x k  
 
Divergence of a vector v k  – scalar:   v k / x k  
 
Curl of a vector v k  – vector:   =   i j k  v k /  x  j  
 
Integrals of tensors 
 
In a similar way we can identify various integrals of tensors (illustrated with tensors of rank 2) e.g. 
   b 
Line integrals   X i j d l 
   a 
 
Area integrals   X i j d S 
   S 
 
Volume integrals  X i j d V 
   V 
 
There may be contractions.  E.g. if X i j = v i  n j , where n j  is the normal to a surface S, then  
 

   v i  n i d S 
   S 
is the (scalar) flux of v i through S. 
 
It may be that the integrating variable is a tensor e.g  

     E i j 
W  =  1/2      S kl dE kl 

     0 
(W is the strain potential energy per unit volume of an elastic material).   
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This is understood to be the sum of 3 x 3 = 9 separate integrals: 
3  3 E i j 

W  =          S kl dE kl 

k=1 l=1 0 
 
Gauss’s Theorem 
 
Gauss’s theorem is one of the most useful theorems in applied mathematics.  We will derive a more general result 
than normally presented. 
 
Consider a convex region V (i.e. no re-entrants or holes) bounded by a surface S. (A non-convex surface can 
usually be split up into a finite number of convex ones). 
 
Let A(x 1, x 2, x 3) be continuously differentiable in V. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the volume integral: 
 
     A(x 1, x 2, x 3) / x 1   dx 1 dx 2 dx 3 
   V 
Integrate this along the line segment L drawn above (cross section area dx 2 dx 3 ):   
 
   A(x 1, x 2, x 3) / x 1  dx 1 dx 2 dx 3  =   (A* – A**) dx 2 dx 3 
 V      S 
Where A* and A** are the values of A at the ends of the tube, and S is the area of all the ends of the tubes across 
V.  Let the areas of the ends of one tube be dS* and dS** 
 
Now dS* and dS** are the projections of dx 2 dx 3 onto  the ends of the tube.  If the normals at the ends are n i *and 
n i ** , then dS* is the projection of dx 2 dx 3 in the (1, 0, 0) direction, so  

dx 2 dx 3  =  dS* cos(angle between n i * and (1, 0, 0) = dS* n 1*;  
 
and dS** is the projection of dx 2 dx 3 in the (-1, 0, 0) direction, so  
 
dx 2 dx 3  =  dS** cos(angle between n i ** and (-1, 0, 0) = - dS** n 1**. 
 
 
So 

 (A* dx 2 dx 3  – A** dx 2 dx 3  =  (A* dS* n 1* + A** dS** n 1 ** (5) 
S     S 

 
The *’s simply mark particular ends of tubes.   As we move over S we can write the RHS of eqn(5) as 
 
  A n 1 dS  

S

V
dS*

dS**

x 1  

x 2  

x 3  

n i * 

n i ** 

L 
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 S 
i.e.  
   A/ x 1  dV  =   A n 1 dS   
 V    S 
 
Similarly we can calculate  A/ x 2 and  A/ x 3 and get: 
 
   A/ x i  dV  =   A n i dS   
 V    S 
 
Now replace A with an arbitrary, continuously differentiable tensor X i j…n 
By the same argument we have: 
 
   X i j…n / x k  dV  =   X i j…n n k dS   
 V    S 
 
This is the most general form of Gauss’s Theorem. 
 
E.g. 1 let the tensor be a vector v k   Then: 
 
   v k / x k  dV  =   v k n k dS   
 V    S 
 
which is the familiar “Gauss’s Flux Law”: 
 
  div v  dV  =   v  n dS   
 V   S 
 

 
Equations of motion of a continuum 

 
Equation of continuity (Conservation of mass) 
 
Our first application of Gauss’s Law is the important Equation of Continuity for a continuum, which is equivalent 
to a statement that mass is conserved. 
 
Consider a fixed volume of space , with matter of (varying) density (x) .  The mass inside  at t = 0 is 
 

 M =    (x) dx 1 dx 2 dx 3 
        
 
The rate of increase of mass in   is 
 

 dM /dt = d (     (x) dx 1 dx 2 dx 3 ) / dt   
            

 
  =        (x) /  t    dx 1 dx 2 dx 3    

        
(the rate of change at each point x ;  fixed). 
 
 
Mass is conserved, so this change must equal the mass inflow through the surface S of : 
 

=      (x) v j (x)  n j d S    
         S    
 
where v j (x) is the velocity of the flow (NB only the component normal to S flows in or out, hence the term v j (x) 
n j ; and we are interested in inflow, hence the minus sign). 
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By Gauss’s Theorem, this flux is: 
 

      { (x) v j (x) } / x j  dx 1 dx 2 dx 3 
       
Hence: 
 

      (x) /  t   dx 1 dx 2 dx 3  +       ((x) v j (x) ) / x j  dx 1 dx 2 dx 3  =  0 
        

or 
 

    {   (x) /  t   +   ((x) v j (x) ) / x j } dx 1 dx 2 dx 3  =  0 
        

 
for any volume  .  So the expression in the { } must be zero everywhere in  .  I.e. 
 

    (x) /  t   +   ((x) v j (x) ) / x j   =  0 
 
This is the Equation of Continuity.  Remember: this is a re-statement of the conservation of mass. 
 
We can differentiate the second term and get the equivalent expression: 
 

    (x) /  t +   (x) / x j  v j (x)  + (x)    v j (x) / x j =  0 
 
which reduces to  v j (x) / x j =  0 for incompressible ( unchanging) fluids. 
 

v j (x) 

n j  
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Extension to moving volume 
 
Consider now the problem of a volume  moving with the continuum.  For any quantity  
X(x , t ) we want to be able to compute the total rate of change: 
 
 I  = d / dt {     X(x , t )  dx 1 dx 2 dx 3 }  

     
where we allow  to change with time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We calculate d / dt from first principles: 
 
 I =  lim   {  (1 / t ) (    X(x , t + t ) dx1dx2dx 3  -      X(x , t ) dx1dx2dx3)} 

 t  0                         
 
(NB we are using fixed, or Eulerian coordinates). 
 
Write   =   +   .  Then: 
 
 I =  lim   {  (1 / t ) (    X(x , t + t ) dx1dx2dx 3  -      X(x , t ) dx1dx2dx3 

 t  0                         
+      X(x , t + t) dx1dx2dx3)} 

            
The first two terms are: 
 
 I1 =  lim   {  (1 / t ) (    [ X(x , t + t )  -  X(x , t ) ] dx1dx2dx 3 )} 

 t  0                        
 
which (we hope, for 'well behaved' X) will converge to  
 
 I1 =      X(x , t ) /  t dx1dx2dx 3 

                
 
i.e. take the limit inside the integral. 
 
The remaining term is: 
 

I2 = lim   (1 / t )       X(x , t + t) dx1dx2dx3 
 t  0         

 

S (t)  (t +  t) 

n 
flow or deformation 
velocity v i   

S (t +  t) 
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Now consider an element dS of S.   
 
 
 
 
 
 
 
 
 
 
 
 
The volume dx1dx2dx3 swept out by dS in  t  is given by dS n  v t.  Assume that  dx1dx2dx3  is so small that   X 
/ x i   <<   X /  t in .  So take the spatial variation of X to be zero across dx1dx2dx3 (but let it vary with dS).  
Therefore an element of the integral I2 is: 
 
 X(x , t + t) dx1dx2dx3 = X(x , t + t) n  v dS t 
 
Thus: 

I2 =  lim    (1 / t )     X(x , t + t) n  v dS t 
  t  0        S 

 
  
 

=  lim       X(x , t + t) n  v dS  
  t  0    S 

 
=       { X(x , t ) v }  n  dS  

     S 
 

= (Gauss)       ( X(x , t) v i) / x i  d 
         

 
 
So, putting it all together: 
 

d /dt      X(x , t ) d   =       X(x , t ) / t  d  +       / x i ( X(x , t) v i) d 
                       
        

 =        {   X / t +   / x i ( X v i) }  d    (6) 
    
which is the result we were seeking. 
 
Equations of motion of a continuum 
 
Now suppose we have body forces G i  /unit mass inside  and surface stress forces T i per unit area i.e.  T i =  S i  j n 

j per unit area on the surface A of .  The total force F i on  is therefore: 
 
F i  =       G i d  +     S i  j n j  dA  

             A 
 

Apply Gauss’s Theorem to each component of T  i : 
 
F i  =       G i d  +        S i  j / x j  d  

              
 

n 

v 

dS 

v  n t 

dx1dx2dx3 =  dS n  v t 
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 =      {   G i d  +   S i  j / x j }  d  
         
This is the total force on  ;  so it must equal the rate of change of momentum of , given by: 
 

d /dt     (  v i ) d   
    
(d  = mass; times velocity v i ). 
 
Now apply equation 6 to each component of momentum X i  =  v i  : 
 

     {   G i d  +   / x j  S i  j }  d   =  d/dt    (  v i ) d   
           
 
      =      {    v i / t +   ( v i v j / x j) }  d 
           
 
Or:      {   G i  +   / x j  S i  j   [   v i / t +   ( v i v j )/ x j] }  d  =  0 
    
 
This applies to all volumes   of the continuum.  So the integrand must vanish everywhere: 
 
    G i   +   S i  j / x j     v i / t    ( v i v j) / x j = 0 
 
 
 
Expand the derivatives: 
 
    G i   +   S i  j / x j     v i / t   v i    / t    ( v i v j) / x j  = 0 
 
But  v i    / t +   ( v i v j)  / x j = v i    / t + v i   ( v j) / x j +  v j  v i / x j  
 
     = v i  {  / t +  / x j ( v j) } +  v j  v i / x j  
 
And the term in { } is zero by the continuity equation.  So the equation of motion becomes: 
 
    G i   +   S i  j / x j      v i / t    v j  v i / x j  = 0 
 
Now the acceleration  i at a point is given by:  
 

 i =  d v i (x , t) / dt    =   v i / t +  v i / x j  .  x j / t 
 
   =   v i / t + v j  v i / x j 

 
So we have: 
 
    G i   +   / x j  S i  j      i = 0 
 
Or:  
 
 
 
 
 
 
 
Which is the ‘celebrated’ Eulerian equation of motion, telling us that the acceleration at a point in a continuum is 
due to the sum of the body forces plus the spatial rate of change of the stress forces. 

 
  i  =   G i   +   S i  j  / x j    (Euler) 
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Navier’s equation 
 
We now combine Hooke’s Law for isotropic materials: 
 
 S i j =  2  E i j +   E k k  i j   
 
with the equation of motion: 
 
   i  =   G i   +   S i  j  / x j    
 
to obtain the equation of motion for elastic materials.  We shall assume that  and  are constant (locally).  
Differentiating Hooke’s Law gives: 
 
  S i  j  / x j  =  2   E i j / x j +    E k k / x j   i j   
 
Now 
 E i j =   ½  ui /  x j  + ½  uj /  x i   
 
And 
 E k k =     uk /  x k 
 
So we have (remembering the summation convention): 
 
  S i  j  / x j  =    ( 2 ui / x j  x j +  2 uj /  x i x j ) +   2 uk /  x k x j   i j  
 

=    ( 2 ui / x j  x j +  2 uj /  x i x j )+   2 uk /  x k x i     
 

(re-gathering) =     2 ui / x j  x j + (  +  )   2 uk /  x k x i 
 
So Euler’s equation: 
 
   i   =   G i  +   S i  j  / x j   
gives 

  i =   G i +    2 ui /  x j  x j + (  +  )   2 uk /  x k x i  (7) 
 

NB   2   /  x j  x j   =  2  , and  2 uk /  x k x i  =     u ; so we can write eqn(7) in vector notation as: 
  

  =   G   +   2   u + (  +  )     u      (7*) 
 

Either way, eqn (7) is Navier’s Equation. 
 
We now assume that body forces are negligible (the principal one in practice is often gravity) and if we consider: 

 i   =  d 2 ui (x , t) / dt 2 
 
  =  d (  ui /  t  +    ui /  x j . d x j / dt  ) / dt 
 

=  d (  ui /  t  +  0  ) / dt   (because the x j are fixed), 
 
=   2  ui /  t 2   +    (  ui /  t) /  x j . d x j  
 

  =   2  ui /  t 2 
 
for the same reason. 
 
So we get: 
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Navier-Stokes equation for fluid flow 
 
In place of Hooke’s law, we apply Euler’s equation to the constituent equation for fluids: 
 
 S i j   =  - p  i  j   +   i  j ( v k / x k +   ( v i / x j +  v j / x i ) 
 
So: 

 S i  j  / x j   
 
=   -  p / x j  i  j   +  ( 2 vi / x j  x j +  2 vj /  x i x j ) +   2 vk /  x k x j   i j  
 
=   -  p / x i   +   2 vi / x j  x j  + (  + )  2 vk /  x k x i   

 
(for  and  constant).  And Euler’s equation gives: 
 

  i  =   G i   -  p / x i   +   2 vi / x j  x j  + (  + )  2 vk /  x k x i   
These are the Navier-Stokes equations for constant  and  .  The motion must also satisfy the continuity equation: 

      /  t   +   ( v j ) / x j   =  0 
 
These equations cover a huge range of fluid flows, from atmospheric circulations, through water currents, eddies 
and waves, to slow flows of treacly fluids.  They are in general very difficult to solve.  e.g for steady flow (  i  =  
0) in an incompressible fluid ( vk /  x k = 0 ),  
 

 G i   -  p / x i   +   2 vi / x j  x j  = 0 
 
the third term is the Laplacian  2 vi  .The flow is driven by body forces G i and the pressure gradient  p / x i . 

 
   2  ui /  t 2  =    2 ui /  x j  x j + (  +  )   2 uk /  x k x i    
 
(Navier’s equation without body forces) 


