MATH/GPHS 322/323 DEs module

Assignment 4 (25%) Due 5pm Friday 14 June 2013

Question 1.

A plane compressional wave is propagation through an isotropic, homogenous space with speed . It arrives at a plane boundary to another isotropic, homogenous medium with speed α ' and density ρ ', where the normal to the boundary is the direction of wave propagation. A wave is reflected from the boundary and a wave is transmitted through the boundary.

The potential for the incident wave can be written:

 $\phi_{in} = A \exp(i [t - x_1/\alpha])$

- If the amplitudes of the reflected and transmitted potentials are A_r and A', write down the potentials for the transmitted and reflected waves.
- (ii) What are the boundary conditions that the waves have to satisfy?
- (iii) For each medium, Hooke's law can be written:

 $S_{ij} = \lambda \delta_{ij} \partial u_k / \partial x_k + \mu (\partial u_i / \partial x_j + \partial u_i / \partial x_i)$ with λ' and μ' in the RH medium.

Show that Hooke's law simplifies to

 $S_{11} = (\lambda + 2 \mu) \partial u_1 / \partial x_1$

Note: $(\lambda + 2 \mu) = \rho \alpha^2$

(iv) Hence show that the ratios A_r/A and A'/A are given by

$$\begin{split} A_r / A &= (\rho^{\prime} \alpha^{\prime} - \rho \alpha^{\prime}) / (\rho^{\prime} \alpha^{\prime} + \rho \alpha^{\prime}) \\ A^{\prime} / A &= 2 \rho \alpha^{\prime} / (\rho^{\prime} \alpha^{\prime} + \rho \alpha^{\prime}) \end{split}$$

(v) What are A_r and A' if the Right Hand medium is a vacuum?

Question 2. A solution to Laplace's equation in the quarter space $x \ge 0$, $y \ge 0$ is given by

 $\begin{aligned} u_z\left(x,y\right) &= (U/\pi \) \ [\ arctan((b-x)/y) + arctan((b+x)/y) - arctan((a-x)/y) - arctan((a+x)/y)) \\] \ ; \ y &\neq 0 \end{aligned}$

- (a) Write down the limit as $y \rightarrow 0^+$ of $\arctan((a x)/y)$ for x > a.
- (b) Hence find the limit as $y \rightarrow 0^+$ of $u_z(x,y)$ for
 - (i) a < x < b,
 (ii) x > b and
 (iii) x < a
- (c) Verify that the shear stress S_{xz} across x = 0 is zero.
- (d) Hence give an interpretation for $u_z(x,y)$.

Question 3. Two particular solutions to the heat diffusion equation are given by.

(1)
$$T(x, t) = A \operatorname{erfc}(x (4Kt)^{-1/2}) = A \{ 1 - \frac{2}{\sqrt{\pi}} \int \exp(-\xi^2) d\xi \}$$

in the half space $x \ge 0$, $t \ge 0$

(2)
$$T(x, t) = \int_{-\infty}^{\infty} F(\omega) \exp(i \omega x) \exp(-\omega^2 K t) d\omega$$

for $-\infty \le x \le -\infty$, $t \ge 0$

(a) Show that they satisfy the heat diffusion equation $\partial T / \partial t$ - K $\nabla^2 T = 0$.

(b) By considering the results of taking appropriate limits for x and t, describe the circumstances, or physical problem, for which they could provide a solution.

Tutorial exercises for Friday 7 June.

1. A plane P wave of amplitude A is incident obliquely at the earth's surface, at incident angle θ .

Use the method of potentials to prove that the angle of reflection = angle of incidence, and Snell's law.

2. If $\theta = 0$, show that the amplitude at the surface is 2A.

3. A plane SH wave of amplitude B is incident at $\theta = 0$ on a plane interface between homogeneous isotropic materials with shear wavespeeds and densities of β , ρ and β' , ρ' respectively. Find the ratio of the transmitted wave amplitude to B.