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Chapter 1  The wave equation 
 
P and S waves 
 
In ‘Tensors’ we showed that a disturbance in a continuum can propagate stress and strain changes according 
to Newton’s Law (via Navier’s equation),  
 
   2  u i /  t 2 =    2 u i /  x j  x j + (  +  )   2 u k /  x k x i   
 
through waves that travel at two different speeds: 
 
(1) longitudinal waves that travel with  a speed given by 
 
   =    {(2  +  )  /  }   
 
The Bulk Modulus of the continuum,  =    +  2/3 ; so equivalently: 
 
   =   {(   +  4/3 ) / }   
 
 
(2) shear waves, in which the displacement is at right angles to the propagation direction, and whose speed is 
given by: 
 
   =   {  / } 
 
Since  is positive,   >   , the compressional waves arrive first from a source (earthquake) (hence their old 
name of Primary – P – waves), and the shear waves arrive later (old name Secondary – S – waves). 
 
For glass (see Table 1),   =  2.72 x 10 10 N/m2,       2 Mg/m3 , and   =  4.5 x 10 10 N/m2 
 
So:   =  3.7 km/s,  and    =  6.4  km/s  
 
(These are typical wavespeeds in the Earth’s lower crust). 
 



 2

Table 1 Some elastic moduli 
 
Material Poisson's 

Ratio  
 
 

 
 

Bulk 
modulus   

Young's 
Modulus Y 

  1010 N/m2 1010 N/m2 1010 N/m2 1010 N/m2 
      
Steel 0.26 8.84 8.19 14.3 20.6 
Gold 0.42 14.7 2.80 16.6 7.95 
Copper 0.33 8.65 4.58 11.7 12.2 
Glass 0.25 2.69 2.72 4.5 6.8 
Fluids 0.5 Large 0 Large 0 
Earth's crust (av) 0.28 4.5 3.6 6.0 9.2 
Incompressible 0.5    3 
Poisson's case 0.25   5/3  5/2  
General -1< <1/2  >0 >0 >0 
 
For many materials, including some rocks,   .  Materials for which this is true are called “Poisson solids”.  
In this case  = 0.25, and 
 
  /      {(2  +  )  /  }  =   3  =  1.732… 
 
 

Broad-band 
(wide frequency band) seismograms from a distant earthquake recorded at Makara, Wellington (SNZO). 
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Separation of Navier’s Equation into Wave Equations 
 
In general, a disturbance will have components of displacement uj in all three coordinate directions.  
However, because P waves travel faster, we can separate P and S waves and follow their propagation 
separately.  
 
A vector identity (see any book on vector calculus) is: 
 
  x  x  u  =    (  u )     2  u 
 
or in tensor notation: 
 
  i j k   /  x j (  k p q  u q /  x p )   =  2 u k /  x k x i    2 u i /  x j  x j 
 
We shall use vector notation in this section as this makes it more compact to write ‘curls’ and “x” product.   
 
Substitute for  2  u  in Navier’s Equation: 
  

  2  u /  t 2 =   2   u + (  +  )     u       
 
  =    ( (  u )   x  x  u) + (  +  )     u   

ie 
   2  u /  t 2 =   (2   +  )     u      x  x  u  (1)  
 

Two 
components 
(vertical and 
one horizontal) 
of ground 
motion from a 
small 
earthquake 
under 
Wellington.  
Note the 
relative sizes of 
the P and S 
waves. 
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Now we need Helmholtz’s Theorem, which says that “nice” vector fields u (i.e. ones that are differentiable 
everywhere, and   0 as R   ) can be written as: 
 
 u   =     +   x         (2) 
 
The functions  and  are called scalar and vector potentials respectively.   is conservative, in the sense 
that where    represents a force, work done against the force travelling around a closed curve is zero.  
Since   only has two independent components (to make three for u)   can be taken to be divergence free: 
    = 0. 
 
We can use this representation for the disturbance u in the continuum because it is small and it will decay 
away from a point source (through geometric spreading) as 1/R.  Then: 
 
   u   =       +     x    
 
  =   2   (second term identically zero) 
and: 
  x u   =   x    +   x  x    
 
  =   x  x    (first term identically zero) 
 
Therefore: 
 
   2  u /  t 2 =     2 (   +   x   ) /  t 2  =     2 /  t 2  +   x  2  / t 2   
 

=  (2   +  )   (  2 )     x ( x  x   )  (as (1) above) 
 
Therefore: 
 
  {  2 /  t 2     (2   +   )  2 } +  x {  2  / t 2   +    x  x   }  =  0 
 
everywhere. 
 
But this is the form of Helmholtz’s Equation for a zero field, which can only be satisfied if the scalar and 
vector potentials are both zero. Ie: 
 
   2 /  t 2     (2   +   ) 2   =  0 
 
   2  / t 2   +    x  x     =  0 
 
Substituting   
 
   =   {(2  +  )  /  } ,    =   ( /  ) 
 
Gives: 
  2 /  t 2  =   2  2    
 
  2  / t 2   =     2  x  x      
  
Now use: 
  
  x  x      =    (     )     2   
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and remembering that       = 0 (Helmholtz) we have: 
 
  2 /  t 2  =   2  2    
 
  2  / t 2   =     2  2       (3) 
 
which are the wave equations for longitudinal and shear waves respectively.   
 
Note that we appear to have exchanged 3 unknowns u j for 4:  and   j .  However, we have      = 0 
which means that only two of  j are independent. 
 
The displacements can be recovered using eqn (2):  take  of  3a and  x of 3b: 
 
  2 () /  t 2  =   2  2 (  ) 
 
  2 ( x  )/ t 2   =     2  2 ( x  )   (3*) 
 
In this formulation we have decoupled the P and S parts of the solution.  This cannot be done in general for 
anisotropic materials. 
 
Wave equation in other coordinate systems 
 
The form of the wave equation: 
 
  2 f /  t 2  =  c 2 2 f   
 
means that we can calculate solution to the wave equation in other coordinates if we write down  2 =     
in them; for example, in spherical polar coordinates. 
 
Spherical Polar Coordinates 
 
 2 f in spherical polars (see Appendix) is  
 
  f  = (1 / r 2 )  /r (r 2  f /r ) + (1 / r 2 sin )  / (sin    f / )  
 

+ (1 / r 2 sin 2 )  2 f/  2   
 
Wave equation in spherical polars – r dependence only 
 
For a function depending only on r, the wave equation becomes: 
 
  2 f /  t 2  -  c 2  2 f  =  2 f /  t 2  -  c 2 (1 / r 2 )  /r (r 2  f /r )  =  0 
 
Try a solution of the form (1/r) f( r - ct), where f is suitably differentiable.  LHS is: 
 
 c 2  (1/r) f  - c 2 (1 / r 2 )  /r (r 2  (f /r) /r )   
 

= c 2  (1/r) f  - c 2 (1 / r 2 )  /r (r 2f  / r  - r 2f  / r2) 
 

= c 2  (1/r) f  - c 2 (1 / r 2 )  /r (r f    - f ) 
 

= c 2 (1/r)  f  - c 2 (1 / r 2 ) (r f    + f   - f ) 
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= c 2  (1/r) f  - c 2 (1 / r  ) f     
 
 = 0 
 
So this is a solution.  The difference from the plane wave solutions in Cartesian coordinates is, of course, that 
as r increases the pulse is diminished by (1/r).   
 
Fourier representation of the wave pulse 
 
Earthquakes generate waves of different frequencies, which may be identified by Fourier analysis of the 
waves.   We can transform the wave pulse f(t) recorded at a station: 
     

F() =   f(t) exp( i  t) dt 
  -  
In practice, the limits are the duration of the waves, or part thereof.  We can then recover the waveform with 
the inverse transform: 
      

f(t) =  (1/2 )  F() exp(- i  t) d 
   -  
We can think of the contribution to the wave at (angular) frequency  ( = 2 ;  is ‘ordinary’ frequency in 
Hz) as having (complex) amplitude A = F()d, which multiplies a harmonic (sine plus cosine) function  
exp(- i  t).   
 
We can convert this from a seismogram to the equation of a plane wave by replacing t with 2(x/L   t); 
viz. exp(- i 2(x/L   t) ) . that is we have a solution 
       

f(2(x/L   t)) =  (1/2 )  F() exp(- i 2(x/L   t)) d 
    -  
 
It will therefore suffice, and be convenient from now on, to only consider harmonic waves, i.e. solution to 
Navier’s equation of the form exp(- i 2(x/L   t) ) (or use sin and cos, without the complex i ) since we can 
build an arbitrary wave by summing these up, as required. 
 
We can multiply (or divide) the argument ( x / L     t) by a constant without affecting the function being a 
solution.  So if g( x / L     t) is a solution, so is  
 
 g( x   L t) = g( x    c t). 
 
where c is the wavespeed,  or . 
  
 
Nomenclature. L is the wavelength, and 2 / L  is called the wavenumber, often denoted k.  We can have a 
vector wavenumber k, in which case (xk) in the argument of f is replaced by  
xj kj = x . k (see ‘Tensors’).   
 
 
These solutions are plane waves.  All points in the plane xj kj = constant 
have the same value of f(xj kj  t), and so these points constitute a plane wave front, propagating in the 
direction of k , with speed =  / | k | . 
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Plane waves revisited: separated solutions of the Wave Equation 
 
We shall now show how plane wave solutions arise as particular solutions to the Wave equation in Cartesian 
coordinates. 
 
We can derive a solution for the wave equations (3) that turns out to be plane waves.  We will try to find a 
solution to the compressional wave equation: 
 
  2 /  t 2  =   2  2    
 
of the form: 
 
  ( x 1, x 2, x 3, t) =  X(x 1)Y(x 2)Z(x 3)T(t)   (4) 
 
This method of seeking a solution is called separation of variables – for obvious reasons.  It is not 
guaranteed to work in any particular problem!  Whether we can find such a solution will depend on the 
boundary conditions.  It is however a good option to try when we have planar boundaries.  We can then 
chose one of the coordinate axes to be normal to one of the boundaries. 
 
Notice that a soluton of this kind reduces the PDE (3) to a set of ordinary differential equations. 
 
Substituting  into: 
 
  2 /  t 2  -   2  2   = 0 
gives: 
  
X(x 1)Y(x 2)Z(x 3) d 2 T(t)/ dt2 -  2 (d 2 X(x 1) / d x 1

2 Y(x 2)Z(x 3) T(t)  
 

+ X(x 1) d 2 Y(x 2) /d x 2
2 Z(x 3) T(t) + X(x 1) Y(x 2) d 2 Z(x 3) /d x 3

2 T(t) )  = 0 
 
Divide through by X(x 1)Y(x 2)Z(x 3)T(t) .  This will be allowed because we do not want any of X, Y, Z, T to 
be zero everywhere.  We get: 
 
(1/T) d2 T(t)/dt2 -  2 ((1/X) d2 X(x 1) / dx 1

2 + (1/Y) d2 Y(x 2) /dx 2
2 + (1/Z) d2 Z(x 3) /dx 3

2 ) = 0 
        ……………..(5) 
This means that: 
 
 (1/T) d2 T(t)/dt2 and the three terms like (1/X) d2 X(x 1) / dx 1

2  
 
must be constant (to see this differentiate eqn (5) with respect to t or x j ). 
 
So put: 
 (1/T) d2 T(t)/dt2  = - 2 , i.e. d2 T(t)/dt2 + 2 T = 0 , 
and 
 (1/X) d2 X(x 1) / dx 1

2 = - k 1 
2 , i.e. d2 X(x 1) / dx 1

2 + k 1 
2 X = 0 ; similarly for Y, Z. 

 
So we have solutions to these ODEs: 
 
 T = A exp( i  t ),  
and 
 X = X0 exp( i  k 1  x 1  ),  
 
 Y = Y0 exp( i  k 2 x 2  ),  
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 Z = Z0 exp( i  k 3 x 3  ),  
 
where A, X0 ,Y0 , Z0 are constants.  Substitute into equation (5): 
 
(1/T) d2 T(t)/dt2 -  2 ((1/X) d2 X(x 1) / dx 1

2 + (1/Y) d2 Y(x 2) /dx 2
2 + (1/Z) d2 Z(x 3) /dx 3

2 )  
 
 = - 2 -  2 (- k1

2  - k2
2  - k3

2  ) = 0 
or 
 2 =  2 ( k1

2  + k2
2  + k3

2 )        (6) 
 
or    =  /| k |, as before. 
 
Thus we have 
 
  ( x 1, x 2, x 3, t) =  X(x 1)Y(x 2)Z(x 3)T(t) =  0 exp ( i (k j x j   t )  (7) 
 
( 0 is a constant = A X0 Y0 Z0) subject to the constraint (6).  In practice, for given wavespeed  and 
frequency , this constrains one of the k j , viz: 
 
 k3

2 =  2 / 2   - k1
2  - k2

2          (6*) 
 
These are harmonic plane waves, as already discussed.  There is no variation of  in directions at right angles 
to k .  Let x be such a point, so that x . k = 0.  Then 
 

 ( x 1, x 2, x 3, t) =  0 exp ( i (0   t )  
 
That is,  is the same everywhere an any time t.  k is normal to the wavefront, and so defines the direction of 
propagation of the wave.  | k | is the wavenumber = 2 / wavelength.  
  
Standard polarisations: P, SV and SH 
 
Equations (3) divide the waves into P and S.  There are two independent S waves.  It is usual and convenient 
to take two specific independent components to describe the S waves: one polarised in a vertical plane, SV , 
and the other horizontal, SH . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Earth's surface 

Incoming ray 

P wave 

SH wave – out-of-plane (horizontally polarised)

Sv wave 

Direction of k 
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Chapter 2: Waves on an interface or surface 
 
Apart from the P and S waves we have already met, there is another class of waves in continuous elastic 
media which are important: waves propagating along an interface between two regions, or on the surface of a 
region.  In particular, waves from shallow earthquakes propagate around the surface of the Earth. 
 
Consider the following geometry: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a wave traveling in the x1 direction so that:  

 The disturbance is largely confined to the neighbourhood of the boundary between M and M ; and 
 It is like a plane wave in that at any time all points on any line parallel to the x 2 axis have equal 

displacements.  NB there may be displacements in the x 2  direction. 
 
From the latter, all derivatives with respect to x 2 will be zero.   
 
Therefore we can replace the vector potential  with a scalar .  The displacement due to  is given by: 
 
 u =  x      
i.e. 
 u1  =    3 /  x 2  -    2/  x 3 
 
 u2  =    1 /  x 3  -    3/  x 1 
 
 u3  =    2 /  x 1  -    1/  x 2 
 
(and   1 /  x 1  +    2/  x 2  +    3 /  x 3  = 0) 
 
But for the displacements in the 1 and 3 directions there is no variation in the 2 direction; so these reduce to: 
 
 u1  =  -    2 / x 3 
 
 u3  =      2 / x 1   
 
So we only need   =   2.   
So in place of  
 
  2  / t 2   =     2  2     (3*) 
 
we have, in this case,  the scalar wave equation 
 

x 3 

medium M; wavespeeds  ,  .   

medium M ;  
wavespeeds  and .   

x 1 

x 2 
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  2  / t 2   =     2  2     (3**) 
 
Therefore, we can describe the motion using two scalar potentials,  and ; and as before the displacements are: 
 
 u1  =       / x 1  -     / x 3 
 
 u3  =       / x 3  +   / x 1        (1) 
Hence: 
  2   =   2   / x 1  

2   +  2  / x 3 
2   

 
=    u1  / x 1   +  2  / x 3  x 1 +  u3  / x 3   -  2  / x 3  x 1 
  

  =    u1  / x 1   +  u3  / x 3   = the dilatation     (2a) 
and 

 2   =   2   / x 1  
2   +  2  / x 3 

2   
 

=   u3  / x 1   -  2  / x 3  x 1 -  u1  / x 3   +  2  / x 3  x 1 

 
=   u3  / x 1   -  u1  / x 3        (2b) 

 
The potentials, and any displacement u 2  will satisfy: 
 
  2  /  t 2  =   2  2  
 
  2  / t 2   =     2  2     
 

 2 u 2   / t 2   =     2  2 u 2    (from Navier’s equation) (3) 
 
We now look for a solution of the form: 
 
   = f (x 3) exp[ i k (x 1 – c t)] 
 
   = g (x 3) exp[ i k (x 1 – c t)] 
 
 u 2     = h (x 3) exp[ i k (x 1 – c t)] 
 
and similar relations in medium M  : 
 
   = f (x 3)  exp[ i k (x 1 – c t)] 
 
   = g (x 3)  exp[ i k (x 1 – c t)] 
 
 u 2     = h (x 3)  exp[ i k (x 1 – c t)]     (4) 
 
NB f (x 3) does NOT mean df /dx 3 !   
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Substitute trial solutions (4) into (3) e.g. for  : 
 
   / x 1    = i k g (x 3) exp[ i k (x 1 – c t)] 
 
  2  / x 1 

2   = - k 2 g (x 3) exp[ i k (x 1 – c t)] 
 
   / x 3    = d g (x 3) / dx 3   exp[ i k (x 1 – c t)] 
 
  2  / x 3 

2    = d 2 g (x 3) / dx 3 
2   exp[ i k (x 1 – c t)] 

 
   /  t    = - i k c g (x 3) exp[ i k (x 1 – c t)] 
 
  2  /  t 2   =  - k 2 c 2 g (x 3) exp[ i k (x 1 – c t)] 
so: 
  2  / t 2   -    2  2  = - k 2 c 2 g (x 3) exp[ i k (x 1 – c t)]  
 

-  2 { - k 2 g (x 3) exp[ i k (x 1 – c t)] + d 2 g (x 3) / dx 3 
2   exp[ i k (x 1 – c t)] } 

 
= 0  

 
iff 

- k 2 c 2 g (x 3)  -  2 { - k 2 g (x 3) + d 2 g (x 3) / dx 3 
2 } = 0 

i.e. 
 d 2 g (x 3) / dx 3 

2  + k 2 g (x 3) [ c 2 /  2 - 1]  =  0 
 
which has a solution: 
 

 g (x 3)  =  B exp( - i k [ c 2 /  2 - 1] 
½

 x 3 ) + E exp( i k [ c 2 /  2 - 1] 
½

 x 3 ) (5) 
 
and similarly for the other functions of (4). 
 
g, and f and h, will be confined to near the boundary if the exponential arguments are real and negative.  So 

we require [ c 2 /  2 - 1] 
½

 (and similar terms) to be positive imaginary i.e. 
 
  c 2 /  2 < 1 ; or c 2  <  2 ; and similarly: 
 
 c 2  <   2 ; c 2 <  2 ; c 2 <   2 . 
 
We also require E = 0 in M  (x 3 < 0), as otherwise this term would increase away from the boundary; and 
similarly  B = 0 in M (x 3 > 0.  So the solutions are of the form: 
 

   = A exp( - i k [ c 2 /  2 - 1] 
½

 x 3 ) exp[ i k (x 1 – c t)] 
 

   = B exp( - i k [ c 2 /  2 - 1] 
½

 x 3 ) exp[ i k (x 1 – c t)] 
 

 u 2     = C exp( - i k [ c 2 /  2 - 1] 
½

 x 3 ) exp[ i k (x 1 – c t)] 
or 

   = A exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ]) 
 

   = B exp( i k [- ( c 2 /  2 – 1) 
½

 x 3  + x 1 – c t ]) 
 

 u 2     = C exp( i k [- ( c 2 /  2 – 1) 
½

 x 3  + x 1 – c t ]) 
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for some constants A, B, C; similarly for medium M  : 
 

   = D  exp( i k [( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ]) 
 

   = E  exp( i k [( c 2 /  2 – 1) 
½

 x 3  + x 1 – c t ]) 
 

 u 2     = F  exp( i k [( c 2 /  2 – 1) 
½

 x 3  + x 1 – c t ]) 
 
Boundary conditions 
 
The displacements and stresses across the interface must match.  So we have: 
 

u 1  =  u 1  
 

u 2  =  u 2  which implies C = F  . 
 

u 3  =  u 3  
 
 S 3 3  =  S 3 3  
 
 S 3 2  =  S 3 2  
 

S 3 1  =  S 3 1  
 
We get the displacements using eqn (1), 
 
 u1  =       / x 1  -     / x 3 
 
 u3  =       / x 3  +   / x 1     
 
The stresses are given by: 
 
 S 3 3   =  2   u 3 /  x 3    +   ( u 1 /  x 1   +   u 3 /  x 3    )   
 

S 3 1   =   (  u 3 /  x 1    +   u 1 /  x 3   )   
 

S 3 2   =    u 2 /  x 3     
 
- since there is to be no  x 2   dependence.   
 
Thus we have: 
 

u1  =    i k A exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ])  
 

+ i k B ( c 2 /  2 – 1) 
½

 exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ])  
 

u3  =    - i k A( c 2 /  2 – 1) 
½

 exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ])   
 

+ i k B exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ])   
 
At x 3 = 0:  
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 u 1 /  x 1   =  - k 2 exp( i k [x 1 – c t ]){ A + B( c 2 /  2 – 1) 
½

} 
 

u 1 /  x 3  = - k 2 exp( i k [x 1 – c t ]){- A (c 2 /  2 – 1) 
½

 - B( c2 / 2 – 1) } 
 

 u 3 /  x 1   =  - k 2 exp( i k [x 1 – c t ]) { - A( c 2 /  2 – 1) 
½

 + B } 
 

u 3 / x 3 = - k2 exp( i k [x 1 – c t ]){A( c2 / 2 – 1) - B( c2 / 2 – 1) 
½

} 
 

u 2 / x 3 =  i k exp( i k [x 1 – c t ]) { -C ( c 2 /  2 – 1) 
½

 } 
 
The stress terms are therefore: 
 
 S 3 3   =  2   u 3 /  x 3    +   ( u 1 /  x 1   +   u 3 /  x 3    )   
 

=  - 2  k2 exp( i k [x 1 – c t ]){A( c2 / 2 – 1) - B( c2 / 2 – 1) 
½

} 
 

-   k 2 exp( i k [x 1 – c t ]){ A + B( c 2 /  2 – 1) 
½

}  
 

-  k2 exp( i k [x 1 – c t ]){A( c2 / 2 – 1) - B( c2 / 2 – 1) 
½

}  
 

= - k 2 exp( i k[x 1 – c t ])[{2  + }{A( c2 / 2 – 1) - B( c2 / 2 – 1) 
½

} +  {A+B(c 2 /  2 – 1) 
½

}] 
 

S 3 1   =   (  u 3 /  x 1    +   u 1 /  x 3   )   
 

=   { - k 2 exp( i k [x 1 – c t ]) { - A( c 2 /  2 – 1) 
½

 + B }}    
 

- k 2 exp( i k [x 1 – c t ]){- A (c 2 /  2 – 1) 
½

 - B( c2 / 2 – 1) } } 
 

=  k2 exp( i k[x 1 – c t ]){2 A( c2 / 2 – 1)
 ½

 + B(c2 / 2 – 2)}  
 

S 3 2   =    u 2 /  x 3    =  i  k exp( i k [x 1 – c t ]) { - C ( c 2 /  2 – 1) 
½

 } 
 
 
 
The corresponding terms in the  medium are as follows.   
 

u1  =    i k D  exp( i k [( c 2 /   2 – 1) 
½

 x 3 + x 1 – c t ])  
 

- i k E  ( c 2 /   2 – 1) 
½

 exp( i k [( c 2 /   2 – 1) 
½

 x 3 + x 1 – c t ])  
 

u3  =      i k D  ( c 2 /   2 – 1) 
½

 exp( i k [( c 2 /   2 – 1) 
½

 x 3 + x 1 – c t ])   
 

+ i k E  exp( i k [( c 2 /   2 – 1) 
½

 x 3 + x 1 – c t ])   
 

S 3 3   = - k 2 exp( i k[x 1 – c t ])[{2  + }{D ( c2 /  2 – 1) + E ( c2 /  2 – 1) 
½

}  
 

+  {D - E  (c 2 /  2 – 1) 
½

}] 
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S 3 1   = -  k2 exp( i k[x 1 – c t ]){2D  ( c2 /  2 – 1)
 ½

 - E  ( c2 /  2 – 1)  + E  }  
 

S 3 2   =  - i   k exp( i k [x 1 – c t ]) { - F  ( c 2 /   2 – 1) 
½

 } 
 
 
Equating terms at x 3 = 0, and suppressing terms like  

i k exp( i k [- ( c2 / 2 – 1) 
½

 x 3 + x 1 – c t ]), gives, for displacements 
 

 { A + B( c 2 /  2 – 1) 
½

} = { D  - E  ( c 2 /   2 – 1) 
½

} 
 

 { - A( c 2 /  2 – 1) 
½

 + B } = { D  ( c 2 /   2 – 1) 
½

 + E }   ….(6.1, 6.2) 
 
And for the stresses: 
 

{2  + }{A( c2 / 2 – 1) - B( c2 / 2 – 1) 
½

} +  {A+B(c 2 /  2 – 1) 
½

} 
 

= {2  + }{D ( c2 /  2 – 1) + E ( c2 /  2 – 1) 
½

} +  {D - E  (c 2 /  2 – 1) 
½

} 
 

 {2 A( c2 / 2 – 1)
 ½

 + B(c2 / 2 – 2)} =  - {2D  ( c2 /  2 – 1)
 ½

 - E  ( c2 /  2 – 2) } 
 

 -  C ( c 2 /  2 – 1) 
½

  =   F  ( c 2 /   2 – 1) 
½

     …(6.3, 6.4, 6.5) 
 
Since C = F  , this last equation 6.5 implies C = F   = 0, because of the sign difference.  This gives a most 
important result: that there are no waves of the kind we are seeking with a u 2 component when there is a 
single interface.  NB surface waves of this kind do exist when there are multiple layers.  They are called 
Love Waves. 
 
The balance of the 4 equations enables us to solve for the relationship between the unknowns A, B, D ,E  
and c.  Note that we can eliminate the unknowns  and  using  
 

2 = (2  +  ) /,   
 

2 =   /,   (whence  = ( 2  - 22 ) )  where  is the density. 
 
Even though the equations can be simplified (a bit), the algebra is gruesome. 
 
Rayleigh waves 
 
Instead of considering the gruesome general case further, we look at the special case where the boundary is a 
free surface e.g. the Earth’s surface.  Then the material properties in medium M   all have zero values.  In 
particular, the stresses on the free side are all zero (what could cause them?) and equations 6.3, 6.4  become: 
 

{2  + }{A( c2 / 2 – 1) - B( c2 / 2 – 1) 
½

} +  {A+B(c 2 /  2 – 1) 
½

} = 0 
 

 {2 A( c2 / 2 – 1)
 ½

 + B(c2 / 2 – 2)} =  0 
 
Simplifying, and eliminating  and  : 
 

A ( c2 - 22 ) - B ( 22 ) (c 2 /  2 – 1) 
½

  ) =  0  
and  

2 A( c2 / 2 – 1)
 ½

 + B(c2 / 2 – 2) =  0 
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Eliminating A and B gives: 
 
 (A/B) 2  =  4 4( c2 / 2 – 1) /  ( c2 - 22 ) 2  =  (c2 / 2 – 2) 2 / 4(c2 / 2 – 1)   (7) 
or 
 16 ( c2 / 2 – 1) (c2 /2   -  2 /2  ) (2 / 2 )   -  (c2 / 2 – 2) 4   =  0   
 
simplifying:   
 
 (c2 / 2)  3  -8(c2 / 2)  2  + (24 – 16 2 / 2 ) (c2 / 2)  –16 (1 - 2 / 2 )  =  0    (8) 
 
which is a cubic in (c2 / 2)  and therefore has at least 1 real root.  Putting c = 0 and c =  into the LHS of 8 
gives  –16 (1 - 2 / 2 )  < 0  and 1 -  8 +24 –16 = 1 > 0.  So there is a root between  
c  =  0 and c = .  This satisfies the requirement stated earlier that c /    < 1.  For normal values of   / , we 
get a root c  ~ 0.9  . 
 
Motion of a Rayleigh wave on the Earth’s surface 
 
If we go back to the displacements: 
 

u1  =    i k A exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ])  
 

+ i k B ( c 2 /  2 – 1) 
½

 exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ])  
 

u3  =    - i k A( c 2 /  2 – 1) 
½

 exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ])   
 

+ i k B exp( i k [- ( c 2 /  2 – 1) 
½

 x 3 + x 1 – c t ])   
 
Consider the displacement at the surface (x 3  = 0) at some fixed x 1 = 0, say.  Then we have: 

 

u1  =    i k A exp( - i k c t ) +  i k B ( c 2 /  2 – 1) 
½

 exp( - i k c t )  
 

u3  =    - i k A( c 2 /  2 – 1) 
½

 exp( - i k c t )  +  i k B exp( - i k c t )   
 
 
Equation 7 gives us: 
 
(A/B) 2  =   (c2 / 2 – 2) 2 / 4(c2 / 2 – 1), 
 
or 
 

(A/B)   =   (2 - c2 / 2 )  / 2(c2 / 2 – 1)
 ½

,      (9) 
 
and we presume we have solved for c/.   
 

Since c /  < 1, A/B =  i (2 - c2 / 2 )  / 2(1 - c2 / 2)
 ½

 = i , say, or i A = - ()  B.  
 

From this, (1 - c2 / 2)
 ½

  =   (2 - c2 / 2)  / 2 . 
 
So: 

u1  =    - k  B exp( - i k c t ) +  i k B ( c 2 /  2 – 1) 
½

 exp( - i k c t )  
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u3  =    k  B ( c 2 /  2 – 1) 
½

 exp( - i k c t )  +  i k B exp( - i k c t )   
 

Now rewrite ( c 2 /  2 – 1) 
½

  as i ( 1 - c 2 /  2 ) 
½

 ; similarly for ( c 2 /  2 – 1) 
½ 

;  

use (1 - c2 / 2)
 ½

  =   (2 - c2 / 2 )  / 2 ; write  = - k c;  
and take a unit value of – kB i.e put – kB = 1. 
 

u1  =     exp( i  t ) + ( 1- c 2 /  2 ) 
½

 exp( i  t )  
 

u3  =    - i (2 - c2 / 2 ) /2  exp( i  t )  -  i exp( i  t )   ( ‘s cancelled) 
 
or 

u1  =    U1 exp( i  t )  
 

u3  =    i U3  exp( i  t )   
 

where U1  =  + ( 1- c 2 /  2 ) 
½

 ;  U3 =  - (2 - c2 / 2 ) /2  -  1 ; both are real. 
 
Now write i = exp( i /2), substitute and collect terms: 

 
u1  =    U1 exp( i  t )  

 
u3  =    U3  exp( i ( t  + /2))   

 
Now cos ( t  + /2) = cos  t  cos /2 – sin  t  sin /2 = - sin  t 
 
The real parts of the displacement are thus 
 

u1  =    U1 cos(  t )  
 

u3  =    - |U3| sin(  t )    (NB as defined above U3 will be negative) 
 
which describes an ellipse as a function of time.  The medium is displaced in a retrograde way as shown.  For 
 = 3.4 km/s,  take  =  3 ; c  ~ 3.06 km/s and hence U1 = 1.13;  U3  = -1.60.  
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Appendix:  Transformation to non-Cartesian coordinates 
 
The position vector r = (x, y, z) at point P can be written as a function of any set of coordinates u j  
 

r = r( u 1 , u 2 , u  3).   
 
A tangent vector to the u 1  curve at P (u 2 , u  3  = constants) is given by  
 

 r / u 1  ,   so a unit vector in this direction is 
 

e 1 =   r / u 1  /|  r / u 1  | 
 
This is the direction of increasing u 1  .  Similarly for e 2  and e 3  .  This gives us the direction of the 
coordinate axes, at r( u 1 , u 2 , u  3).   
 
Write h j  =  |  r / u j  | ; these are called scale factors. 
 
 f 
 
We want to write: 
 

 f =   e 1 f 1  + e 2  f 2  + e 3 f 3  
 
where the f j are to be determined.  We have: 
 

  d r  =    r / u 1  du 1 +  r / u 2  du 2 +  r / u 3  du 3 
 

=   e 1 |  r / u 1  | du 1 + e 2  |  r / u 2 | du 2 + e 3 |  r / u 3  |  du 3 
 

=   e 1 h 1  du 1 + e 2  h 2  du 2 + e 3 h 3 du 3 
 
Write df two ways: 
 
 df   = f / x dx + f / y dy + f / z dz   
 

=  f   d r  
 

=  ( e 1 f 1  + e 2  f 2   + e 3 f 3)   (  e 1 h 1  du 1 + e 2  h 2  du 2 + e 3 h 3 du 3 ) 
 
=  f 1  h 1 du 1  + f 2  h 2 du 2   + f 3  h 3 du 3     

and 
df =   f / u 1  du 1 +  f / u 2  du 2 +  f / u 3  du 3 

 
Hence, comparing the two: 
 
(  (1/ h 1)  f / u 1  , (1/ h 2)  f / u 2  , (1/ h 3)  f / u 3  )  =  (f 1 , f 2 , f 3 ) 
 
So the LHS is f in the new coordinate system, and the operator  is given by: 
 

   =  (  (1/ h 1)   / u 1  , (1/ h 2)   / u 2  , (1/ h 3)   / u 3  )   
 



 19

Spherical Polar Coordinates 
 
In spherical polar coordinates: 
 
 (x, y, z) = (r sin  cos , r sin  sin , r cos ) 
 

( u 1 , u 2 , u  3)  = ( r ,  ,  ) 
 
h 1  =  |  r / r  |  =  1 
 
h 2  =  |  r /   |  =  r ( cos 2 cos 2  + cos 2  sin 2  + sin 2 ) ½  =  r 

 
h 3  =  |  r /   |  =  r ( sin 2 sin 2  + sin 2  cos 2  + 0) ½  =  r  sin  

 
So: 
 f  =  (   f / r  , (1/ r)  f /   , (1/ r sin )  f /   )   
 
  v 
 
It can be shown (tutorial exercise) that  
 

  v   =  (1/ h 1 h 2 h 3) {  (h 2 h 3 v 1 )/ u 1  +   (h 3 h 1 v 2 )/ u 2   
 

+   (h 1 h 2 v 3 )/ u 3} 
 
In spherical polars: 
 

  v   =  (1/ r 2 sin ) {  (r 2 sin  v r )/ r  +   (r sin  v  )/    
 

+   (r v  )/ } 
 
 2 f in spherical polars 
 
  f  = (1 / r 2 )  /r (r 2  f /r ) + (1 / r 2 sin )  / (sin    f / )  
 

+ (1 / r 2 sin 2 )  2 f/  2   
 
 
 
 
 


