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Chapter 1 The wave equation

P and S waves

In “Tensors’” we showed that a disturbance in a continuum can propagate stress and strain changes according
to Newton’s Law (via Navier’s equation),

pO° ui/ot? = po’uilox;ox;+(u +1) 02U/ XX
through waves that travel at two different speeds:
(1) longitudinal waves that travel with a speed given by
a= N{@u+r) Ip}
The Bulk Modulus of the continuum, k = A + 2/3 pu; so equivalently:
a = V{(x + 43p)/p}
(2_) sh%ar waves, in which the displacement is at right angles to the propagation direction, and whose speed is
given hy:

B="{ulp}

Since « is positive, o > [, the compressional waves arrive first from a source (earthquake) (hence their old
name of Primary — P — waves), and the shear waves arrive later (old name Secondary — S — waves).

For glass (see Table 1), p = 2.72x 10 N/m? p ~ 2Mg/m*®,andx = 4.5x 10 *° N/m?
So: B =37km/s, and o = 6.4 km/s

(These are typical wavespeeds in the Earth’s lower crust).



Table 1 Some elastic moduli

Material Poisson's | A n Bulk Young's

Ratio v modulus « Modulus Y
10" N/m* | 10" N/m* 10" N/m” 10" N/m?

Steel 0.26 8.84 8.19 14.3 20.6

Gold 0.42 14.7 2.80 16.6 7.95

Copper 0.33 8.65 4,58 11.7 12.2

Glass 0.25 2.69 2.72 45 6.8

Fluids 0.5 Large 0 Large 0

Earth's crust (av) | 0.28 4.5 3.6 6.0 9.2

Incompressible 0.5 0 u 0 3u

Poisson's case 0.25 A A 5/3 A 512 A

General -1<v <1/2 >0 >0 >0

For many materials, including some rocks, u ~ A. Materials for which this is true are called “Poisson solids”.
In this case v = 0.25, and

alp = N{@u+p)/p}y=+3=1732..
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Separation of Navier’s Equation into Wave Equations

In general, a disturbance will have components of displacement u;in all three coordinate directions.
However, because P waves travel faster, we can separate P and S waves and follow their propagation
separately.
A vector identity (see any book on vector calculus) is:

VXVxu= V(Veu) - V?u
or in tensor notation:

€ijk a/an(S kpqauqlaxp) zazuklaxkaxi —azui/anan

We shall use vector notation in this section as this makes it more compact to write ‘curls’ and “x” product.

Substitute for V 2 u in Navier’s Equation:

po?ul/ot? =puV? u+(u+i) VVeu
= p(V(Veu)-VxVxu+(u+i) VVeu
ie
pd?ul/ot? = Qu+A)VVeu—-pvVxvxu (1)



Now we need Helmholtz’s Theorem, which says that “nice” vector fields u (i.e. ones that are differentiable
everywhere, and —» 0as R — o) can be written as:

u=Vveé+Vxy )

The functions ¢ and y are called scalar and vector potentials respectively. V ¢ is conservative, in the sense
that where V ¢ represents a force, work done against the force travelling around a closed curve is zero.
Since wy only has two independent components (to make three for u) w can be taken to be divergence free:
Vey =0.

We can use this representation for the disturbance u in the continuum because it is small and it will decay
away from a point source (through geometric spreading) as 1/R. Then:

Veu = VeV + VeVXx y

=V (second term identically zero)
and:
VXu = VXV + VXVX y
= VXVX y (first term identically zero)
Therefore:
pd2ulot? = pd* (Vo +Vxwy)lot?=pvVao2elot? +pVxoiylot?
= Qu+A) V(V2) - nVx(VXxVx y) (as(1)above)
Therefore:
V{po?d/ot? — Qu +rL)V?}+Vx{po?ylot’ + pVxVxwy}=0
everywhere.

But this is the form of Helmholtz’s Equation for a zero field, which can only be satisfied if the scalar and
vector potentials are both zero. le:

poZdlot? — Qu+A)Vip =0
pd2ylot? + pVxVxy =0
Substituting

a=V{@u+r)Ip}, Bp="(ulp)

Gives:
d2plot? = a’vi
d%ylot? = - B2VXVxX y
Now use:

VXVXy = V(Vey ) -Viy



and remembering that V e y =0 (Helmholtz) we have:

d2¢lot? = a’vi

d2ylot? = B2Viy @)
which are the wave equations for longitudinal and shear waves respectively.

Note that we appear to have exchanged 3 unknowns u ; for 4: ¢ and v ;. However, we have Vey =0
which means that only two of  j are independent.

The displacements can be recovered using eqn (2): take V of 3aand V x of 3b:
d2(Vh)lot? = a’V3(Ve)
d2(Vxy)lot? = B2VE(Vxy) (3%)

In this formulation we have decoupled the P and S parts of the solution. This cannot be done in general for
anisotropic materials.

Wave equation in other coordinate systems
The form of the wave equation:
0°flot? = c?V°f

means that we can calculate solution to the wave equation in other coordinates if we write down V2=V *V
in them; for example, in spherical polar coordinates.

Spherical Polar Coordinates

V 2 £ in spherical polars (see Appendix) is

VeVf=(/r?)olor(r?aflor)+(1/r?sin0)a/00 (sin0 of/00)

+(L/r?sin®0) 02t/ 8%¢

Wave equation in spherical polars — r dependence only

For a function depending only on r, the wave equation becomes:
0%flot? - c?2V2if =0%flot? - c?(/r*)dlor(r?oflor) =0

Try a solution of the form (1/r) f( r - ct), where f is suitably differentiable. LHS is:
cZ@mfr-c2@ir?)alor(r?o(fir)lor)
=c2@nfr-c2@/r®)alor(c ' /v -r% /1)
=c?@nfr-c?@/ir®)olor(rf -f)

=c?@n) fr-c?@/lrd)(rf" +f -f)



=c?Wnfr-c*@/r)f"
=0

So this is a solution. The difference from the plane wave solutions in Cartesian coordinates is, of course, that
as r increases the pulse is diminished by (1/r).

Fourier representation of the wave pulse

Earthquakes generate waves of different frequencies, which may be identified by Fourier analysis of the
waves. We can transform the wave pulse f(t) recorded at a station:
o8]
F(w) = [f(t) exp(i ot) dt
- o0
In practice, the limits are the duration of the waves, or part thereof. We can then recover the waveform with
the inverse transform:
o0
f(t)= (1/2n) [F(o)exp(-iot)do
-0
We can think of the contribution to the wave at (angular) frequency o ( = 2nv ; v is ‘ordinary’ frequency in
Hz) as having (complex) amplitude A = F(®)d®, which multiplies a harmonic (sine plus cosine) function
exp(-i o t).

We can convert this from a seismogram to the equation of a plane wave by replacing wt with 2t(x/L £ v t);
viz. exp(- i 2r(x/L £ v 1)) . that is we have a solution
o0
fn(x/L £ v 1) = (1/2n) [ F(®) exp(- i 2n(x/L + v 1)) do

- 00

It will therefore suffice, and be convenient from now on, to only consider harmonic waves, i.e. solution to
Navier’s equation of the form exp(- i 2n(x/L = v t) ) (or use sin and cos, without the complex i ) since we can
build an arbitrary wave by summing these up, as required.

We can multiply (or divide) the argument ( x / L + v t) by a constant without affecting the function being a
solution. Soifg(x/L + vt)isasolution, sois

g(x+ vLt)=g(x £ ct).
where c is the wavespeed, 8 or a.
Nomenclature. L is the wavelength, and 2z / L is called the wavenumber, often denoted k. We can have a

vector wavenumber K, in which case (xK) in the argument of f is replaced by
X Kj = X . K (see “Tensors’).

These solutions are plane waves. All points in the plane x; kj = constant
have the same value of f(x; k; + ot), and so these points constitute a plane wave front, propagating in the
direction of k , with speed = / | K| .



Plane waves revisited: separated solutions of the Wave Equation

We shall now show how plane wave solutions arise as particular solutions to the Wave equation in Cartesian
coordinates.

We can derive a solution for the wave equations (3) that turns out to be plane waves. We will try to find a
solution to the compressional wave equation:

02plot? = a?V?¢
of the form;

b (X1, X2, X3, 1) = X(X1)Y(X2)Z(x3)T(t) (4)
This method of seeking a solution is called separation of variables — for obvious reasons. It is not
guaranteed to work in any particular problem! Whether we can find such a solution will depend on the
boundary conditions. It is however a good option to try when we have planar boundaries. We can then
chose one of the coordinate axes to be normal to one of the boundaries.
Notice that a soluton of this kind reduces the PDE (3) to a set of ordinary differential equations.

Substituting ¢ into:

o2¢lot? - a?V?i¢ =0
gives:

X(X )Y (X2)Z(x3) d 2T() d2 - o 2(d 2X(x 1) / d X 12 Y(x2)Z(x5) T(0)
+X(x1) d 2Y(x2) /d X2 Z(x3) T(t) + X(x1) Y(X2) d ?Z(x3) /d x5 T(t)) =0

Divide through by X(x1)Y(x2)Z(x3)T(t) . This will be allowed because we do not want any of X, Y, Z, T to
be zero everywhere. We get:

(UT) d®T(0)/dt® - o 2 (LX) d*X(x 1) / dx 2 + (11Y) d> Y (X ) fdx ,* + (1/Z) d? Z(x 5) /dx 52 ) = 0
This means that:
(1/T) d? T(t)/dt? and the three terms like (1/X) d? X(x 1) / dx ;2
must be constant (to see this differentiate eqn (5) with respect to t or X; ).
So put:
(UT) T@R)/dE® =- o, ie. T(t)/dt* + 0* T=0,
e (LX) d?X(x1) /dx P =-k 12, ie. d*X(xq1) /dx,* + k1% X =0;similarly for Y, Z.
So we have solutions to these ODEs:
T=Aexp(ziot),
and

X=Xoexp(xi ki X1 ),

Y =Yoexp(xi koaxs ),



Z=Zoexp(xi k3xs ),
where A, X,,Yo, Zo are constants. Substitute into equation (5):
(UT) d® T(R)/dt? - o 2 ((1/X) d?X(x 1) / dx 2 + (1Y) d? Y(x ) Jdx ,? + (1/Z) d? Z(x ) [dx 5*)
=-0*-a?(-k® -k? -ki?)=0
or
o’=a?(k? +k? +ks?) (6)
or a =w/| k|, as before.
Thus we have
O (X1, Xo, X3, 1) = X(X)Y(X2)Z(x3)T(t) =doexp(zi(kjx;zot) @)

(¢ ois a constant = A X, Yg Zy) subject to the constraint (6). In practice, for given wavespeed o and
frequency o, this constrains one of the k ;, viz:

k2= 0’la? - ki - kp? (6%)

These are harmonic plane waves, as already discussed. There is no variation of ¢ in directions at right angles
to k. Let x be such a point, so that x . K = 0. Then

O (X, Xo, X3, ) =doexp(xi(0tot)

That is, ¢ is the same everywhere an any time t. k is normal to the wavefront, and so defines the direction of
propagation of the wave. | k| is the wavenumber = 2t / wavelength.

Standard polarisations: P, Sy and Sy
Equations (3) divide the waves into P and S. There are two independent S waves. It is usual and convenient

to take two specific independent components to describe the S waves: one polarised in a vertical plane, Sy,
and the other horizontal, Sy .

Earth's surface

Direction of k

P wave /

Su wave — out-of-plane (horizontallv polarised)

Sv wave

Incoming ray



Chapter 2: Waves on an interface or surface

Apart from the P and S waves we have already met, there is another class of waves in continuous elastic
media which are important: waves propagating along an interface between two regions, or on the surface of a
region. In particular, waves from shallow earthquakes propagate around the surface of the Earth.

Consider the following geometry:
X2

medium M ’;
X3 / wavespeeds o’ and f'.

\

medium M; wavespeeds o, B .

Consider a wave traveling in the X; direction so that:
e The disturbance is largely confined to the neighbourhood of the boundary between M and M ’; and
e ltis like a plane wave in that at any time all points on any line parallel to the X , axis have equal
displacements. NB there may be displacements in the X , direction.

From the latter, all derivatives with respect to X , will be zero.

Therefore we can replace the vector potential y with a scalar y. The displacement due to y is given by:

u=vxy

i.e.
Ulza\Ug/ 8X2-6\u2/ 8X3
U2=0\|11/ 6X3'6\|}3/ OX 1
U3=8\V2/ 8X1-6\4/1/ OX »

(and 6\411/6X1+6\u2/ 6X2+6\V3/6X3:0)
But for the displacements in the 1 and 3 directions there is no variation in the 2 direction; so these reduce to:

- 8w2/8X3

Uz

6w2/6X1

Us

Soweonly need y = vy ,.
So in place of

%y lot? = Biviy (3%)

we have, in this case, the scalar wave equation



o2y lot? = Pp2viy (3**)

Therefore, we can describe the motion using two scalar potentials, ¢ and y; and as before the displacements are:

u; = 6¢/6X1-8\u/6X3
U3 = O0¢/OXx3+dwylox, (1)
Hence:
V2 =029 /ox.12 +0% /0x32
=0 U /OX1 +0%y |O0X30X1+0Us [ OX3 -0%y [ 0X 30X
=0 u /0x,; +0us/0Oxs =the dilatation 6 (2a)
and

Viy =02y /ox,? +0%y [0x3?
= QU /OXq, -02% |OX30X1-0Uy [OX3 +0°%) /0OX3 0%,
=0Uz [0OX1 -0Uy [ OX 3 (2b)
The potentials, and any displacement u , will satisfy:
02p/ot? = a?v2y
o2y lot? = Pp2viy
d%u, 10t2 = B?Viu, (from Navier’s equation) (3)

We now look for a solution of the form:

¢ =f(xg)exp[ik(x1-ct)]
v =g (x3)exp[ik(xi-ct)]
U, =h(x3)exp[ik (x1—-ct)]

and similar relations in medium M ' ;

o’ =f(x3) explik (x1-ct)]
v =g (x3) exp[ik(x1-ct)]
up,"  =h(xs) exp[ik(xi-ct)] (4)

NB f (x 3)’ does NOT mean df /dx 3!

10



Substitute trial solutions (4) into (3) e.g. for y :

oyl ox, =ikg(Xxa)exp[ik(x1—ct)]
d%ylox,?  =-k%g(xs)exp[ik (xi-ct)]
oyl oxs =dg(x3)/dxz exp[ik(xi—ct)]

0%y loxs?  =d?g(xs)/dxs? exp[ik (x1-ct)]

oylot =-ikcg(xz)exp[ik(xi—ct)]
o2y lot? = -k2c?g(xs)exp[ik (x1-ct)]

SO. o2y lot? " B*Vviy =-kZc’g(x3)exp[ik (x1-ct)]
-B2{-k’g(xg)exp[ik(xi—ct)]+d?g(xs)/dxs® exp[ik(x;—-ct)]}
=0

iff

_ k?c?g(xs) -B2{-k?g(xa) +d?g(xs)/dxs"}=0

ie.

d?g(xa)/dxs® +k?g(xg) [c?/B?-1] =0
which has a solution:

g(xs) = Bexp(-ik[c2/[32-1]1/2x3)+Eexp(ik[CZIBZ-l]l/ng) (5)
and similarly for the other functions of (4).

g, and f and h, will be confined to near the boundary if the exponential arguments are real and negative. So
1,
we require [c?/ B %-1] & (and similar terms) to be positive imaginary i.e.

c2/p?<1;orc?<p?;andsimilarly:

2

cl<a f;cli<p?ici<a .

We also require E=0in M (x 3 <0), as otherwise this term would increase away from the boundary; and
similarly B'=0in M’ (x 3 > 0. So the solutions are of the form:

b =Aexp(-ik[c2/a?-1]"x3)exp[ik (x1-c1)]

v =Bexp(-ik[c2/B2-1]"x3) exp[ik (X1 —c1)]

u, =Cexp(-ik[czlﬁz-l]%xg)exp[ik(xl—ct)]
i o =Aexp(ik[-(c?/a?-1) " xs+x1-ct])

v =Bexp(ik[(c2/p2=1)"xs +x1-ct])

U, =Cexp(ik[-(c2/B2=1) “xs +x1-ct])

11



for some constants A, B, C; similarly for medium M " ;

o' =D'exp(ik[(c2/a?=1)*xs+x,—-ct])
y' o =Erexp(ik[(c?/B?-1)"xs +x1-ct])
U’ =Frexp(ik[(c?/p2-1)"xs +x1—ct])

Boundary conditions

The displacements and stresses across the interface must match. So we have:

U; = u,’

U, = U," whichimpliessC=F"'.
Uz = Uuj'

S33 = Sa3’

S32 = S32’

S31 = Say’

We get the displacements using eqn (1),

o¢/0xq - a\u/aX3

Uy

O¢ loxz+0ylox,

Us

The stresses are given by:

S33 =2M6U3/8X3 +7\,(6U1/6X1+6U3/8X3 )
S, =u(8u3/6X1 +6U1/8X3)
832 :uauz/6X3

- since there isto be no x , dependence.

Thus we have:

U= ikAexp(ik[-(c2/a?=1)%xs+x1-ct])
+ikB(c2/B2=1) Zexp(ik[-(c?/B?=1) " xs+x1-ct])

Us = -ikA(c2a?=1) Zexp(ik[-(c2/a?=1)"xs+x1-cCt])
+ikBexp(ik[-(c?/B?-1)"xs+x1-ct])

Atx;=0:

12



dui/ox, = -kzexp(ik[xl—ct]){A+B(CZ/BZ—l)l/Z}
oU1/0xs=-K2exp(ik[Xx1—ctD{-AC?/p?-1)"-B(c*/p-1)}
ouslox: = -k2exp(ik[xi—ct]){-A(c?/a?-1)"+B}
auglaxgz-kzexp(ik[xl—ct]){A(czlaz—l)-B(czlﬁz—l)%}
U,/ oxs= ikexp(ik[xi—ct]) {-C(c2/p2-1)"}
The stress terms are therefore:
S33 =2uoduz/oxs + A(@Qui/Oxy + O0uzl/dxs )
= -2 ukPexp(i K [X1—ctDEA(c?/ o= 1) - B(c*/ B2=1) "}
CakZexp(ik[xi—ctD{A+B(c2/p2-1)"
A K2exp(i Kk [x1—ctD{A(? 02— 1) - B(c*/ B -1) 3
=-k2exp(ik[xl—ct])[{2M+x}{A(c2/a2—1)-B(czlﬁz—l)l/z}+k{A+B(c2/BZ—1)1/2}]
S31 = u(dusz/doxy +0u/dxs)
= u{-k?exp(ik[xi—ctD{-A(c2a?-1)*+B}}
k2Zexp(ik[X1—ctD{-AC2/p?-1)"-B(c* B -1)}}
= k2exp(i K[x 1 —c tD{2 A( 2/ o= 1) * + B(c?/ B2 - 2)}

Ssy = pouUs/oxs = ipkexp(ik[xi—ct]){-C(c2/p2-1)"}

The corresponding terms in the ’ medium are as follows.

U'= kD exp(ik[(c?/a'2=1)"xs+x:1-ct])
CPKE'(c?/B'?-1) "exp(ik[(c?/B'?-1) " xs+x1-ct])

Us'= kD' (c?/a’?=1) Zexp(ik[(c?a’?=1)"*xs+x1-ct])
+ikE exp(ik[(c?/B'2-1) " xs+x1-Ct])

Sas’ =-kZexp(ik[xi-ctDH2 W + VHD (/o 2=1) +E (/B 2=1) ™}

+ N {D"E' (B 7-1) "]

13



Sar' =-w Kexp(ik[X:i—ct]){2D’ (la?=1)*-E' (/B ?-1) +E'}
. . 2 2 Y%
Ss2" = -ip'kexp(ik[xi—ct]){-F'(c*/p'"-1)"}
Equating terms at X 3 = 0, and suppressing terms like
i kexp(ik[- (c2/ a®=1) “x5+x1—ct]), gives, for displacements
2 2 Yoy _ ’ ' 2 r2 Ya
{A+B(c/Bp°-1)"}={D'-E'(c°/B'"-1)"}
{-A(c?a?-1)"+B}={D'(c?a'2~1) +E"} ...(6.1,6.2)
And for the stresses:
{2 n+ AHA(C 02— 1) - B(c?/ B2—1) “}+ A {A+B(c 2/ B2-1) "}
S W+ VHD (Ao Pm D) +E (P21 +n {D-E' (2P 2-1)"}
L2 AP 02=1) *+ B P =2)} = - {2D ' (Pl o 2= 1) - E" (2B ?-2)}
SuC(c?/Bi-1)" = wF(c?Ipri-1)* ...(6.3, 6.4, 6.5)
Since C = F ', this last equation 6.5 implies C = F ' =0, because of the sign difference. This gives a most
important result: that there are no waves of the kind we are seeking with a u , component when there is a

single interface. NB surface waves of this kind do exist when there are multiple layers. They are called
Love Waves.

The balance of the 4 equations enables us to solve for the relationship between the unknowns A, B, D’ [E’
and c. Note that we can eliminate the unknowns p and A using

a?=@pu+r)lp,
B2= nlp, (whence r=p(o? -2p%)) where p is the density.
Even though the equations can be simplified (a bit), the algebra is gruesome.
Rayleigh waves
Instead of considering the gruesome general case further, we look at the special case where the boundary is a

free surface e.g. the Earth’s surface. Then the material properties in medium M’ all have zero values. In
particular, the stresses on the free side are all zero (what could cause them?) and equations 6.3, 6.4 become:

2 u+2HA( 02— 1) -B(c?/ B2=1) "y + A {A+B(c2/B2-1) }=0
L2 AP o2=1) " + B2/ p?-2)}= 0
Simplifying, and eliminating p and 2

A(c-2B°)-B(26°) (c*/p2-1)" )= 0

and
1
2 A(c* o2 -1) #+B(c*/ B2=2)= 0O

14



Eliminating A and B gives:

(AIB)2 = 4B%(c?/B?-1)/ (c*-2p*)2 = (I p*-2)%1 4(c*/ a? - 1) 7
or

16 (c?/ B -1) (Ip? - o IB? ) (B?/a?) - (*/B*-2)* =0
simplifying:

(c?/B?) 3 -8(c?/ B?) 2 + (24— 16 B*/ a?) (¢*/PA) -16 (1-p*/0®) = 0 (8)

which is a cubic in (c?/ p?) and therefore has at least 1 real root. Putting c = 0 and ¢ = B into the LHS of 8
gives —16 (1 - p?/a?) <0 and 1- 8+24-16=1> 0. So there is a root between

¢ = 0andc = . This satisfies the requirement stated earlier that c/ p < 1. For normal values of /o, we
getarootc ~0.98.

Motion of a Rayleigh wave on the Earth’s surface

If we go back to the displacements:

U= ikAexp(ik[-(c2/a?=1)"xs+x:1-ct])
+ikB(c2/B2=1) Zexp(ik[-(c?/B?=1) "xs+x:1-ct])

CikA(c a?-1) Pexp(ik[- (c?/a?=1) " xs+x1-ct])

Us

+ikBexp(ik[-(c?/B?=1) " xs+x.1-ct])

Consider the displacement at the surface (x 3 = 0) at some fixed x ; =0, say. Then we have:

U= ikAexp(-ikct)+ ikB(c?/B2-1)"exp(-ikct)

CikA(c?/a?-1)"exp(-ikct) + ikBexp(-ikct)

Us

Equation 7 gives us:

(AIB)? = (c%/B*-2)%/ 4(c*/ o* - 1),

or

(A/B) = +(2-¢%/B2)/2(Plo?-1) % 9)
and we presume we have solved for c/f.
Sincec/oc<1,A/B=J_ri(2-c2/[32)/2(1-02/a2)1/2=iy,say, ori A=-(+)yB.

From this, (1- ¢/ a?)* = (2-c2/Bd) 1 27.

So:
uy = -kyBexp(-ikct)+ ikB(cZIBZ—l)l/zexp(-ikct)
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us = kyB(CZ/ocz—l)l/zeXp(-ikCt) + ikBexp(-ikct)
: 2102 Voo 2102\ 2. s 2 .2 V2,
Now rewrite (c“/B“—1) “ asi(1-c“/B°) " ;similarly for (c“/a“-1) ;
1,
use (1-c2/o?)” = (2-c2IB?) /2y write ® = - kc;
and take a unit value of — kB i.e put — kB = 1.

vexp(iot)+(1-c?/p?) “exp(iot)

Uy =
us = -i(2-c¢®/p?)2 exp(imt) - iexp(iot) (y‘scancelled)
or
up = Ujexp(iot)
Us = iUz exp(iot)

where Uy = v+ (1-c2/B2)*; Us= - (2-c2/B?)/2 - 1: both are real.
Now write i = exp( i /2), substitute and collect terms:
up = Urexp(iot)
us = Uz exp(i(ot +7/2))
Now cos (wt +7/2)=coswt cosn/2—sinwt sinm/2=-sinwt
The real parts of the displacement are thus
Uy = Ujcos(mt)
Uz = -|Uslsin(wt) (NB as defined above U3z will be negative)

which describes an ellipse as a function of time. The medium is displaced in a retrograde way as shown. For
B =3.4km/s, take o = V3 B; ¢ ~3.06 km/s and hence U; = 1.13; Uz =-1.60.
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Appendix: Transformation to non-Cartesian coordinates

The position vector r = (X, y, z) at point P can be written as a function of any set of coordinates u
r=r(us,uz,uy).

A tangent vector to the u ; curve at P (u,, u 3 = constants) is given by
orlouy, S0 a unit vector in this direction is
e;=orlou/|oxr/ouy |

This is the direction of increasing u, . Similarly fore , and ez . This gives us the direction of the
coordinate axes, atr(ui, Uz, U 3).

Write hj = |0r/ouj |; these are called scale factors.
|4
We want to write:
VvV = e f, +e, fy +esfs
where the f j are to be determined. We have:
dr = 0r/ou;du;+dr/ou, du+or/ouszdus
= e |drlou,|dus+e, |[Or/ou,|dus+es|dr/ous | dus
= g;hydus+e, hy dus+eszhzdug
Write df two ways:
df =of/oxdx+of/oydy+of/ oz dz
=Vfedr

= (e.f, +e, f, +esfs) e(eshy duste, hy du+eshsdus)

fl hldul +f2 h2dU2 +f3 h3dU3
and
df

oflou;du+of/lou, dur,+0f/ousdus

Hence, comparing the two:

(@hy)oflou,,(Uhy)oflou, , @/ hg)oflous) = (f,fo,f3)

So the LHS is VT in the new coordinate system, and the operator V is given by:

V = ((U/h)o/ous,(U/h,)d/ou,,(1/hs)d ldus)

18



Spherical Polar Coordinates
In spherical polar coordinates:
(X, Y, z) =(rsin 6 cos ¢, rsin 0 sin ¢, r cos )
(Ug,uz,ug) =(r,0,9¢)
hy=|orxlor| =1
h, =|06x/00 | = r(cos? cos?dp+cos?0sin?d+sin?0)” = r
hs=10r/od| =r(sin?0sin?¢+sin?0cos’p+0)”* = r sino

So:
vi=(oflor,@Ir)ofloe ,(Lrsin0)oflod)

Vev
It can be shown (tutorial exercise) that
Vev = (U/hshyhg){o(hhzvi)lous + d(hshyv,)ou,
+9(hih,vs)dus}
In spherical polars:
Vev = (1/r?sin0) {a(r?sindv,)/or + o(rsin@v)/oe
+ 0(rvy)o o}
72 f in spherical polars
VeVf=(/r?)olor(r?aflor)+(1/r?sin0) /00 (sin® of/60)

+(1/r%sin?0)0%f/0%¢
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